Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Aug 13;10(15):3145-52.
doi: 10.1002/smll.201303507. Epub 2014 Apr 28.

Highly active metastable ruthenium nanoparticles for hydrogen production through the catalytic hydrolysis of ammonia borane

Affiliations

Highly active metastable ruthenium nanoparticles for hydrogen production through the catalytic hydrolysis of ammonia borane

Enass K Abo-Hamed et al. Small. .

Abstract

Late transition metal nanoparticles (NPs) with a favorably high surface area to volume ratio have garnered much interest for catalytic applications. Yet, these NPs are prone to aggregation in solution, which has been mitigated through attachment of surface ligands, additives or supports; unfortunately, protective ligands can severely reduce the effective surface area on the NPs available for catalyzing chemical transformations. The preparation of 'metastable' NPs can readily address these challenges. We report herein the first synthesis of monodisperse metastable ruthenium nanoparticles (RuNPs), having sub 5 nm size and an fcc structure, in aqueous media at room temperature, which can be stored for a period of at least 8 months. The RuNPs can subsequently be used for the catalytic, quantitative hydrolysis of ammonia-borane (AB) yielding hydrogen gas with 21.8 turnovers per min at 25 °C. The high surface area available for hydrolysis of AB on the metastable RuNPs translated to an Ea of 27.5 kJ mol(-1) , which is notably lower than previously reported values for RuNP based catalysts.

Keywords: catalysis; hydrogen production; ruthenium nanoparticles.

PubMed Disclaimer

Publication types

LinkOut - more resources