Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Oct;257(4 Pt 1):G594-600.
doi: 10.1152/ajpgi.1989.257.4.G594.

A new CCK analogue differentiates two functionally distinct CCK receptors in rat and mouse pancreatic acini

Affiliations

A new CCK analogue differentiates two functionally distinct CCK receptors in rat and mouse pancreatic acini

T Matozaki et al. Am J Physiol. 1989 Oct.

Abstract

Analysis of the competitive inhibition of 125I-labeled cholecystokinin octapeptide (CCK-8) binding to isolated rat or mouse pancreatic acini showed that in both species CCK-8 interacts with two different affinity sites. A newly synthesized CCK analogue modified at the COOH-terminal phenylalanine residue totally inhibited 125I-CCK binding. This interaction occurred with sites of a single affinity in rat acini but with two different affinity sites in mouse acini. When acini were incubated with increasing concentrations of CCK-8, a biphasic stimulation of amylase release was observed. By use of rat acini, the analogs stimulated amylase release but caused no inhibition at supramaximal concentrations. By contrast, in mouse pancreatic acini, analogues showed a biphasic stimulation of amylase release similar to CCK-8. Both CCK-8 and the analogue stimulated [3H]leucine incorporation into protein at low concentrations in rat pancreatic acini. Higher concentrations of CCK-8 profoundly inhibited [3H]leucine incorporation, whereas the analogue had no inhibitory effect. Moreover, the analogue at higher concentrations blocked the inhibition of [3H]leucine incorporation caused by CCK-8 but did not affect carbamylcholine-induced inhibition. In mouse acini, however, the CCK analogue inhibited [3H]leucine incorporation similar to the effect of CCK-8. The results support the concept that occupancy of distinct affinity sites or states of the CCK receptor is associated with specific biological actions. A model of the CCK receptor is proposed in which two interchangeable affinity states exist. By occupying all the receptors in only one state, the new CCK analogues serve as partial agonists of some and antagonists of other actions of CCK.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources