Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Apr 29;11(4):e1001635.
doi: 10.1371/journal.pmed.1001635. eCollection 2014 Apr.

Association between prenatal exposure to antiretroviral therapy and birth defects: an analysis of the French perinatal cohort study (ANRS CO1/CO11)

Affiliations

Association between prenatal exposure to antiretroviral therapy and birth defects: an analysis of the French perinatal cohort study (ANRS CO1/CO11)

Jeanne Sibiude et al. PLoS Med. .

Abstract

Background: Antiretroviral therapy (ART) has major benefits during pregnancy, both for maternal health and to prevent mother-to-child transmission of HIV. Safety issues, including teratogenic risk, need to be evaluated. We estimated the prevalence of birth defects in children born to HIV-infected women receiving ART during pregnancy, and assessed the independent association of birth defects with each antiretroviral (ARV) drug used.

Methods and findings: The French Perinatal Cohort prospectively enrolls HIV-infected women delivering in 90 centers throughout France. Children are followed by pediatricians until 2 y of age according to national guidelines. We included 13,124 live births between 1994 and 2010, among which, 42% (n = 5,388) were exposed to ART in the first trimester of pregnancy. Birth defects were studied using both European Surveillance of Congenital Anomalies (EUROCAT) and Metropolitan Atlanta Congenital Defects Program (MACDP) classifications; associations with ART were evaluated using univariate and multivariate logistic regressions. Correction for multiple comparisons was not performed because the analyses were based on hypotheses emanating from previous findings in the literature and the robustness of the findings of the current study. The prevalence of birth defects was 4.4% (95% CI 4.0%-4.7%), according to the EUROCAT classification. In multivariate analysis adjusting for other ARV drugs, maternal age, geographical origin, intravenous drug use, and type of maternity center, a significant association was found between exposure to zidovudine in the first trimester and congenital heart defects: 2.3% (74/3,267), adjusted odds ratio (AOR) = 2.2 (95% CI 1.3-3.7), p = 0.003, absolute risk difference attributed to zidovudine +1.2% (95% CI +0.5; +1.9%). Didanosine and indinavir were associated with head and neck defects, respectively: 0.5%, AOR = 3.4 (95% CI 1.1-10.4), p = 0.04; 0.9%, AOR = 3.8 (95% CI 1.1-13.8), p = 0.04. We found a significant association between efavirenz and neurological defects (n = 4) using the MACDP classification: AOR = 3.0 (95% CI 1.1-8.5), p = 0.04, absolute risk +0.7% (95% CI +0.07%; +1.3%). But the association was not significant using the less inclusive EUROCAT classification: AOR = 2.1 (95% CI 0.7-5.9), p = 0.16. No association was found between birth defects and lopinavir or ritonavir with a power >85% for an odds ratio of 1.5, nor for nevirapine, tenofovir, stavudine, or abacavir with a power >70%. Limitations of the present study were the absence of data on termination of pregnancy, stillbirths, tobacco and alcohol intake, and concomitant medication.

Conclusions: We found a specific association between in utero exposure to zidovudine and heart defects; the mechanisms need to be elucidated. The association between efavirenz and neurological defects must be interpreted with caution. For the other drugs not associated with birth defects, the results were reassuring. Finally, whatever the impact that some ARV drugs may have on birth defects, it is surpassed by the major role of ART in the successful prevention of mother-to-child transmission of HIV. Please see later in the article for the Editors' Summary.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Study population: French Perinatal Cohort (ANRS CO1/CO11).
Figure 2
Figure 2. Association between overall birth defects and first trimester antiretroviral drug exposure (French Perinatal Cohort [ANRS CO1/CO11]): multivariate analysis.
Squares indicate AORs for exposure in the first trimester versus no exposure to the drug, adjusted on IDU, geographical origin, maternal age, and maternity center. Lines indicate 95% confidence intervals and square areas are proportional to the power for an OR of 1.5. Total number of birth defects = 575/13,124. Numbers for each ARV drug are shown in Table 3.

Comment in

References

    1. Warszawski J, Tubiana R, Le Chenadec J, Blanche S, Teglas JP, et al. (2008) Mother-to-child HIV transmission despite antiretroviral therapy in the ANRS French Perinatal Cohort. AIDS 22: 289–299. - PubMed
    1. European Collaborative Study (2005) Mother-to-child transmission of HIV infection in the era of highly active antiretroviral therapy. Clin Infect Dis 40: 458–465. - PubMed
    1. Cooper ER, Charurat M, Mofenson L, Hanson IC, Pitt J, et al. (2002) Combination antiretroviral strategies for the treatment of pregnant HIV-1-infected women and prevention of perinatal HIV-1 transmission. J Acquir Immune Defic Syndr 29: 484–494. - PubMed
    1. Delfraissy JF (2004) Prise en charge thérapeutique des personnes infectées par le VIH. Rapport 2004. Recommandations du groupe d'experts. Paris: Flammarion Médecine-Sciences.
    1. Blanche S, Tardieu M, Benhammou V, Warszawski J, Rustin P, et al. (2006) Mitochondrial dysfunction following perinatal exposure to nucleoside analogues. AIDS 20: 1685–1690. - PubMed

Publication types

MeSH terms

Substances