Ester carbonyl vibration as a sensitive probe of protein local electric field
- PMID: 24788907
- PMCID: PMC4104746
- DOI: 10.1002/anie.201402011
Ester carbonyl vibration as a sensitive probe of protein local electric field
Abstract
The ability to quantify the local electrostatic environment of proteins and protein/peptide assemblies is key to gaining a microscopic understanding of many biological interactions and processes. Herein, we show that the ester carbonyl stretching vibration of two non-natural amino acids, L-aspartic acid 4-methyl ester and L-glutamic acid 5-methyl ester, is a convenient and sensitive probe in this regard, since its frequency correlates linearly with the local electrostatic field for both hydrogen-bonding and non-hydrogen-bonding environments. We expect that the resultant frequency-electric-field map will find use in various applications. Furthermore, we show that, when situated in a non-hydrogen-bonding environment, this probe can also be used to measure the local dielectric constant (ε). For example, its application to amyloid fibrils formed by Aβ(16-22) revealed that the interior of such β-sheet assemblies has an ε value of approximately 5.6.
Keywords: IR spectroscopy; carbonyl groups; hydrogen bonds; protein electrostatics; vibrational probes.
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Figures




Similar articles
-
Measuring electrostatic fields in both hydrogen-bonding and non-hydrogen-bonding environments using carbonyl vibrational probes.J Am Chem Soc. 2013 Jul 31;135(30):11181-92. doi: 10.1021/ja403917z. Epub 2013 Jul 18. J Am Chem Soc. 2013. PMID: 23808481 Free PMC article.
-
Modeling Vibrational Spectra of Ester Carbonyl Stretch in Water and DMSO Based on Molecular Dynamics Simulation.J Phys Chem B. 2015 Sep 24;119(38):12390-6. doi: 10.1021/acs.jpcb.5b06541. Epub 2015 Sep 14. J Phys Chem B. 2015. PMID: 26335032
-
Nitrile Probes of Electric Field Agree with Independently Measured Fields in Green Fluorescent Protein Even in the Presence of Hydrogen Bonding.J Am Chem Soc. 2016 May 25;138(20):6561-70. doi: 10.1021/jacs.6b02156. Epub 2016 May 11. J Am Chem Soc. 2016. PMID: 27128688
-
An expanded genetic code for probing the role of electrostatics in enzyme catalysis by vibrational Stark spectroscopy.Biochim Biophys Acta Gen Subj. 2017 Nov;1861(11 Pt B):3053-3059. doi: 10.1016/j.bbagen.2017.02.009. Epub 2017 Feb 14. Biochim Biophys Acta Gen Subj. 2017. PMID: 28229928 Review.
-
Measuring Electric Fields in Biological Matter Using the Vibrational Stark Effect of Nitrile Probes.Annu Rev Phys Chem. 2018 Apr 20;69:253-271. doi: 10.1146/annurev-physchem-052516-045011. Annu Rev Phys Chem. 2018. PMID: 29677466 Review.
Cited by
-
Vibrational Approach to the Dynamics and Structure of Protein Amyloids.Molecules. 2019 Jan 6;24(1):186. doi: 10.3390/molecules24010186. Molecules. 2019. PMID: 30621325 Free PMC article. Review.
-
Kinetics of exchange between zero-, one-, and two-hydrogen-bonded states of methyl and ethyl acetate in methanol.J Phys Chem B. 2015 Mar 26;119(12):4512-20. doi: 10.1021/acs.jpcb.5b00745. Epub 2015 Mar 13. J Phys Chem B. 2015. PMID: 25738661 Free PMC article.
-
Kinetics of peptide folding in lipid membranes.Biopolymers. 2015 Jul;104(4):281-90. doi: 10.1002/bip.22640. Biopolymers. 2015. PMID: 25808575 Free PMC article. Review.
-
Possible Existence of α-Sheets in the Amyloid Fibrils Formed by a TTR105-115 Mutant.J Am Chem Soc. 2018 Jan 17;140(2):629-635. doi: 10.1021/jacs.7b09262. Epub 2018 Jan 4. J Am Chem Soc. 2018. PMID: 29241000 Free PMC article.
-
Expanding the toolbox for supramolecular chemistry: probing host-guest interactions and binding with in situ FTIR spectroscopy.Chem Sci. 2025 May 6;16(23):10282-10288. doi: 10.1039/d5sc01329a. eCollection 2025 Jun 11. Chem Sci. 2025. PMID: 40365048 Free PMC article.
References
-
- Boxer SG. J. Phys. Chem. B. 2009;113:2972–2983. - PubMed
-
- Kim H, Cho M. Chem. Rev. 2013:5817–5847. - PubMed
-
- Volk M, Kholodenko Y, Lu HSM, Gooding EA, DeGrado WF, Hochstrasser RM. J. Phys. Chem. B. 1997;101:8607–8616.
- Schkolnik G, Utesch T, Salewski J, Tenger K, Millo D, Kranich A, Zebger I, Schulz C, Zimanyi L, Rakhely G, Mroginski MA, Hildebrandt P. Chem. Commun. 2012;48:70–72. - PubMed
- Chung JK, Thielges MC, Fayer MD. J. Am. Chem. Soc. 2012;134:12118–12124. - PMC - PubMed
- Walker DM, Hayes EC, Webb LJ. Phys. Chem. Chem. Phys. 2013;15:12241–12252. - PubMed
-
- Dyer RB, Gai F, Woodruff WH. Acc. Chem. Res. 1998;31:709–716.
- Woutersen S, Pfister R, Hamm P, Mu YG, Kosov DS, Stock G. J. Chem. Phys. 2002;117:6833–6840.
- Demirdoven N, Cheatum CM, Chung HS, Khalil M, Knoester J, Tokmakoff A. J. Am. Chem. Soc. 2004;126:7981–7990. - PubMed
- Waegele MM, Culik RM, Gai F. J. Phys. Chem. Lett. 2011;2:2598–2609. - PMC - PubMed
- Serrano AL, Waegele MM, Gai F. Protein Sci. 2012;21:157–170. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources