Mitochondria-nucleus shuttling FK506-binding protein 51 interacts with TRAF proteins and facilitates the RIG-I-like receptor-mediated expression of type I IFN
- PMID: 24788966
- PMCID: PMC4006813
- DOI: 10.1371/journal.pone.0095992
Mitochondria-nucleus shuttling FK506-binding protein 51 interacts with TRAF proteins and facilitates the RIG-I-like receptor-mediated expression of type I IFN
Abstract
Virus-derived double-stranded RNAs (dsRNAs) are sensed in the cytosol by retinoic acid-inducible gene (RIG)-I-like receptors (RLRs). These induce the expression of type I IFN and proinflammatory cytokines through signaling pathways mediated by the mitochondrial antiviral signaling (MAVS) protein. TNF receptor-associated factor (TRAF) family proteins are reported to facilitate the RLR-dependent expression of type I IFN by interacting with MAVS. However, the precise regulatory mechanisms remain unclear. Here, we show the role of FK506-binding protein 51 (FKBP51) in regulating the dsRNA-dependent expression of type I IFN. The binding of FKBP51 to TRAF6 was first identified by "in vitro virus" selection and was subsequently confirmed with a coimmunoprecipitation assay in HEK293T cells. The TRAF-C domain of TRAF6 is required for its interaction, although FKBP51 does not contain the consensus motif for interaction with the TRAF-C domain. Besides TRAF6, we found that FKBP51 also interacts with TRAF3. The depletion of FKBP51 reduced the expression of type I IFN induced by dsRNA transfection or Newcastle disease virus infection in murine fibroblasts. Consistent with this, the FKBP51 depletion attenuated dsRNA-mediated phosphorylations of IRF3 and JNK and nuclear translocation of RelA. Interestingly, dsRNA stimulation promoted the accumulation of FKBP51 in the mitochondria. Moreover, the overexpression of FKBP51 inhibited RLR-dependent transcriptional activation, suggesting a scaffolding function for FKBP51 in the MAVS-mediated signaling pathway. Overall, we have demonstrated that FKBP51 interacts with TRAF proteins and facilitates the expression of type I IFN induced by cytosolic dsRNA. These findings suggest a novel role for FKBP51 in the innate immune response to viral infection.
Conflict of interest statement
Figures
References
-
- Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140: 805–820. - PubMed
-
- Barbalat R, Ewald SE, Mouchess ML, Barton GM (2011) Nucleic acid recognition by the innate immune system. Annu Rev Immunol 29: 185–214. - PubMed
-
- Kato H, Takahasi K, Fujita T (2011) RIG-I-like receptors: cytoplasmic sensors for non-self RNA. Immunol Rev 243: 91–98. - PubMed
-
- Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, et al. (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5: 730–737. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous
