Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun 20:572:44-7.
doi: 10.1016/j.neulet.2014.04.040. Epub 2014 May 2.

Oxytocin cells in the paraventricular nucleus receive excitatory synaptic inputs from the contralateral paraventricular and supraoptic nuclei in lactating rats

Affiliations

Oxytocin cells in the paraventricular nucleus receive excitatory synaptic inputs from the contralateral paraventricular and supraoptic nuclei in lactating rats

Kazumasa Honda et al. Neurosci Lett. .

Abstract

The present experiments were undertaken to examine whether oxytocin cells in the paraventricular nucleus receive synaptic inputs from the contralateral supraoptic or paraventricular nucleus. Using urethane-anesthetized lactating rats, extracellular action potentials were recorded from single oxytocin or vasopressin cells in the paraventricular nucleus. Electrical stimulation was applied to the contralateral supraoptic nucleus or paraventricular nucleus, and responses of oxytocin or vasopressin cells were analyzed by peri-stimulus time histogram or by change in firing rate of oxytocin or vasopressin cells. Electrical stimulation of the contralateral supraoptic nucleus or paraventricular nucleus did not cause antidromic excitation in oxytocin or vasopressin cells but caused orthodromic responses. Although analysis by peri-stimulus time histogram showed that electrical stimulation of the contralateral supraoptic nucleus or paraventricular nucleus caused orthodromic excitation in both oxytocin and vasopressin cells, the proportion of excited oxytocin cells was greater than that of vasopressin cells. Train stimulation applied to the contralateral supraoptic nucleus or paraventricular nucleus at 10 Hz increased firing rates of oxytocin cells and decreased those of vasopressin cells. The results of the present experiments suggest that oxytocin cells in the paraventricular nucleus receive mainly excitatory synaptic inputs from the contralateral supraoptic nucleus and paraventricular nucleus. Receipt these synaptic inputs to oxytocin cells may contribute to the synchronized activation of oxytocin cells during the milk ejection reflex.

Keywords: Milk ejection burst; Neural connection; Oxytocin cell; Paraventricular nucleus; Supraoptic nucleus.

PubMed Disclaimer

LinkOut - more resources