Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Sep;70(1):415-21.
doi: 10.1007/s12013-014-9931-6.

Fasudil hydrochloride protects neurons in rat hippocampal CA1 region through inhibiting GluR6-MLK3-JNKs signal pathway

Affiliations

Fasudil hydrochloride protects neurons in rat hippocampal CA1 region through inhibiting GluR6-MLK3-JNKs signal pathway

Xiu-E Wei et al. Cell Biochem Biophys. 2014 Sep.

Abstract

Fasudil hydrochloride (FH), a Rho kinase (ROCK) inhibitor, has been reported to prevent cerebral ischemia in vivo from increasing cerebral blood flow and inhibiting inflammatory responses. However, it is uncertain by what mechanism a ROCK inhibitor can directly protect neurons against ischemic damage. The present study was designed to evaluate whether FH decreased the increased phosphorylation of glutamate receptor 6 (GluR6) and its downstream in GluR6-MLK3-JNKs signal transduction pathway following global transient cerebral ischemia, as a result of protecting against neuronal apoptosis and death. Transient cerebral ischemia was induced by the Pulsinelli-Brierley four-vessel occlusion method. FH (15 mg/kg) was administered to rats by intraperitoneal injection 30 min before ischemia. The phosphorylation and protein expression of GluR6 at 6 h during reperfusion were detected using immunoprecipitation and immunoblotting analysis. The phosphorylation and protein expression of Mixed lineage kinase 3 (MLK3) at ischemia/reperfusion (I/R) 6 h and c-Jun N-terminal kinase (JNK) at I/R 3 d were detected using immunoblotting analysis, respectively. The same method was used to detect the expression of caspase-3 at I/R 6 h. Furthermore, we also use TUNEL staining and Cresyl violet staining to examine the survival neurons in rat hippocampal CA1 regions after 3 and 5 d reperfusion, respectively. Our study indicated that FH could inhibit the increased phosphorylation of GluR6 and MLK3 and the expression of caspase-3 at peaked 6 h of reperfusion and the phosphorylation of JNK (3 d) (p < 0.5). The results of TUNEL staining and Cresyl violet showed that the number of surviving pyramidal neurons in rats hippocampal CA1 subfield increased markedly in FH-treated rats compared with ischemic groups after 3 or 5 d of reperfusion following ischemia (p < 0.5). These results suggested that FH, as a ROCK inhibitor, may be partly responsible for its protective effects against such damage by taking part in GluR6-MLK3-JNKs signaling pathway which modulates ischemic damage. Taken together, this is the first study investigating Rho and ROCK as the upstream of GluR6 taking part in GluR6-MLK3-JNKs signal transduction pathway following cerebral ischemia.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources