Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jul-Aug;7(4):587-94.
doi: 10.1016/j.brs.2014.03.012. Epub 2014 Apr 4.

Anti-epileptogenic effect of high-frequency stimulation in the thalamic reticular nucleus on PTZ-induced seizures

Affiliations

Anti-epileptogenic effect of high-frequency stimulation in the thalamic reticular nucleus on PTZ-induced seizures

C R Pantoja-Jiménez et al. Brain Stimul. 2014 Jul-Aug.

Abstract

Background: Deep brain stimulation, specifically high-frequency stimulation (HFS), is an alternative and promising treatment for intractable epilepsies; however, the optimal targets are still unknown. The thalamic reticular nucleus (TRN) occupies a key position in the modulation of the cortico-thalamic and thalamo-cortical pathways.

Objective: We determined the efficacy of HFS in the TRN against tonic-clonic generalized seizures (TCGS) and status epilepticus (SE), which were induced by scheduled pentylenetetrazole (PTZ) injections.

Methods: Male Wistar rats were stereotactically implanted and assigned to three experimental groups: Control group, which received only PTZ injections; HFS-TRN group, which received HFS in the left TRN prior to PTZ injections; and HFS-Adj group, which received HFS in the left adjacent nuclei prior to PTZ injections.

Results: The HFS-TRN group reported a significant increase in the latency for development of TCGS and SE compared with the HFS-Adj and Control groups (P < 0.009). The number of PTZ-doses required for SE was also significantly increased (P < 0.001). Spectral analysis revealed a significant decrease in the frequency band from 0.5 Hz to 4.5 Hz of the left motor cortex in the HFS-TRN and HFS-Adj groups, compared to the Control group. Conversely, HFS-TRN provoked a significant increase in all frequency bands in the TRN. EEG asynchrony was observed during spike-wave discharges by HFS-TRN.

Conclusion: These data indicate that HFS-TRN has an anti-epileptogenic effect and is able to modify seizure synchrony and interrupt abnormal EEG recruitment of thalamo-cortical and, indirectly, cortico-thalamic pathways.

Keywords: Deep brain stimulation; Experimental epileptic seizures; Neuromodulation; Spike-wave discharges; Thalamic reticular nucleus.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources