Signaling specificity in the Akt pathway in biology and disease
- PMID: 24794538
- PMCID: PMC4062840
- DOI: 10.1016/j.jbior.2014.04.001
Signaling specificity in the Akt pathway in biology and disease
Abstract
Akt/PKB is a key master regulator of a wide range of physiological functions including metabolism, proliferation, survival, growth, angiogenesis and migration and invasion. The Akt protein kinase family comprises three highly related isoforms encoded by different genes. The initial observation that the Akt isoforms share upstream activators as well as several downstream effectors, together with the high sequence homology suggested that their functions were mostly redundant. By contrast, an increasing body of evidence has recently uncovered the concept of Akt isoform signaling specificity, supported by distinct phenotypes displayed by animal strains genetically modified for each of the three genes, as well as by the identification of isoform-specific substrates and association with discrete subcellular locations. Given that Akt is regarded as a promising therapeutic target in a number of pathologies, it is essential to dissect the relative contributions of each isoform, as well as the degree of compensation in pathophysiological function. Here we summarize our view of how Akt selectivity is achieved in the context of subcellular localization, isoform-specific substrate phosphorylation and context-dependent functions in normal and pathophysiological settings.
Keywords: Akt; Cancer; Nucleus; PI 3-Kinase; Protein kinase; Signaling.
Copyright © 2014 Elsevier Ltd. All rights reserved.
Conflict of interest statement
None declared.
Figures



References
-
- Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol. 1997;7:261–9. - PubMed
-
- Alessi DR, Pearce LR, Garcia-Martinez JM. New insights into mTOR signaling: mTORC2 and beyond. Sci Signal. 2009;2:pe27. - PubMed
-
- Andjelkovic M, Alessi DR, Meier R, Fernandez A, Lamb NJ, Frech M, et al. Role of translocation in the activation and function of protein kinase B. The Journal of biological chemistry. 1997;272:31515–24. - PubMed
-
- Arboleda MJ, Lyons JF, Kabbinavar FF, Bray MR, Snow BE, Ayala R, et al. Overexpression of AKT2/protein kinase Bbeta leads to up-regulation of beta1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer research. 2003;63:196–206. - PubMed
-
- Bae SS, Cho H, Mu J, Birnbaum MJ. Isoform-specific regulation of insulin-dependent glucose uptake by Akt/protein kinase B. The Journal of biological chemistry. 2003;278:49530–6. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous