Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Dec 15;49(24 Pt 1):6935-40.

Cleavage of cellular and extracellular Saccharomyces cerevisiae DNA by bleomycin and phleomycin

Affiliations
  • PMID: 2479473

Cleavage of cellular and extracellular Saccharomyces cerevisiae DNA by bleomycin and phleomycin

C W Moore. Cancer Res. .

Abstract

Low-molecular-weight phleomycin (Mr approximately 1500-1600) is considerably less active on a per mol basis than structurally related bleomycin in degrading purified Saccharomyces cerevisiae DNA. Phleomycin also exhibits a substantially higher requirement than bleomycin for ferrous ions. However, phleomycin (0.13 to 3.3 x 10(-6) M) produced 7 to 350 times more breaks than bleomycin in prelabeled intracellular [2-14C]DNA and [6-3H]DNA and is considerably more cytotoxic than bleomycin. Phleomycin and bleomycin produced equivalent numbers of DNA breaks at equivalent, physiologically meaningful levels of survival, indicating that DNA breaks are related to lethal properties of the anticancer glycopeptides. Phleomycin degradation of extracellular DNA was only detectable at greater than or equal to 1.7 x 10(-4) M, approximately two orders of magnitude higher than the concentrations of phleomycin which yielded equivalent fragmentation of intracellular DNA, indicating that phleomycin causes substantially more degradation of intracellular DNA than extracellular DNA. In contrast, bleomycin (greater than or equal to 1.7 x 10(-5) M) degradation of purified DNA is quite extensive and considerably greater than the degradation of DNA in cells incubated with the same or higher concentrations of bleomycin. Neither phleomycin nor bleomycin cleaved extracellular DNA in the absence of ferrous ions, although both chemical analogues cleaved intracellular DNA without adding iron. Therefore, the requirement for metal ion in stimulating DNA degradation by the two structural families of glycopeptidic antibiotics is met by the cell itself.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources