Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Sep 28:190:607-23.
doi: 10.1016/j.jconrel.2014.03.055. Epub 2014 Apr 30.

Lipid and polymer nanoparticles for drug delivery to bacterial biofilms

Affiliations
Free article
Review

Lipid and polymer nanoparticles for drug delivery to bacterial biofilms

Katrien Forier et al. J Control Release. .
Free article

Abstract

Biofilms are matrix-enclosed communities of bacteria that show increased antibiotic resistance and the capability to evade the immune system. They can cause recalcitrant infections which cannot be cured with classical antibiotic therapy. Drug delivery by lipid or polymer nanoparticles is considered a promising strategy for overcoming biofilm resistance. These particles are able to improve the delivery of antibiotics to the bacterial cells, thereby increasing the efficacy of the treatment. In this review we give an overview of the types of polymer and lipid nanoparticles that have been developed for this purpose. The antimicrobial activity of nanoparticle encapsulated antibiotics compared to the activity of the free antibiotic is discussed in detail. In addition, targeting and triggered drug release strategies to further improve the antimicrobial activity are reviewed. Finally, ample attention is given to advanced microscopy methods that shed light on the behavior of nanoparticles inside biofilms, allowing further optimization of the nanoformulations. Lipid and polymer nanoparticles were found to increase the antimicrobial efficacy in many cases. Strategies such as the use of fusogenic liposomes, targeting of the nanoparticles and triggered release of the antimicrobial agent ensured the delivery of the antimicrobial agent in close proximity of the bacterial cells, maximizing the exposure of the biofilm to the antimicrobial agent. The majority of the discussed papers still present data on the in vitro anti-biofilm activity of nanoformulations, indicating that there is an urgent need for more in vivo studies in this field.

Keywords: Antibiotics; Biofilm; Drug delivery; Liposome; Nanomedicines; Polymer nanoparticles.

PubMed Disclaimer