Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Apr 22:5:151.
doi: 10.3389/fpls.2014.00151. eCollection 2014.

Tolerance to drought and salt stress in plants: Unraveling the signaling networks

Affiliations
Review

Tolerance to drought and salt stress in plants: Unraveling the signaling networks

Dortje Golldack et al. Front Plant Sci. .

Abstract

Tolerance of plants to abiotic stressors such as drought and salinity is triggered by complex multicomponent signaling pathways to restore cellular homeostasis and promote survival. Major plant transcription factor families such as bZIP, NAC, AP2/ERF, and MYB orchestrate regulatory networks underlying abiotic stress tolerance. Sucrose non-fermenting 1-related protein kinase 2 and mitogen-activated protein kinase pathways contribute to initiation of stress adaptive downstream responses and promote plant growth and development. As a convergent point of multiple abiotic cues, cellular effects of environmental stresses are not only imbalances of ionic and osmotic homeostasis but also impaired photosynthesis, cellular energy depletion, and redox imbalances. Recent evidence of regulatory systems that link sensing and signaling of environmental conditions and the intracellular redox status have shed light on interfaces of stress and energy signaling. ROS (reactive oxygen species) cause severe cellular damage by peroxidation and de-esterification of membrane-lipids, however, current models also define a pivotal signaling function of ROS in triggering tolerance against stress. Recent research advances suggest and support a regulatory role of ROS in the cross talks of stress triggered hormonal signaling such as the abscisic acid pathway and endogenously induced redox and metabolite signals. Here, we discuss and review the versatile molecular convergence in the abiotic stress responsive signaling networks in the context of ROS and lipid-derived signals and the specific role of stomatal signaling.

Keywords: MAP kinase; ROS; drought; lipid signaling; transcription factor, Arabidopsis.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Proposed model on crosstalk of abscisic acid (ABA), gibberellic acid (GA), and jasmonate signaling in plant cellular responses to the abiotic stressors drought and salt. Hypothesized links are illustrated with dashed lines. The lines and arrows illustrate pathways that are not shown and described in detail. Compare text for details.

References

    1. Abogadallah G. M. (2010). Antioxidative defense under salt stress. Plant Signal. Behav. 5 369–37410.4161/psb.5.4.10873 - DOI - PMC - PubMed
    1. Achard P., Cheng H., De Grauwe L., Decat J., Schoutteten H., Moritz T., et al. (2006). Integration of plant responses to environmentally activated phytohormonal signals. Science 311 91–9410.1126/science.1118642 - DOI - PubMed
    1. Achard P., Gong F., Cheminant S., Alioua M., Hedden P., Genschik P. (2008). The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20 2117–212910.1105/tpc.108.058941 - DOI - PMC - PubMed
    1. Acharya B. R., Jeon B. W., Zhang W., Assmann S. M. (2013). Open Stomata 1 (OST1) is limiting in abscisic acid responses of Arabidopsis guard cells. New Phytol. 200 1049–106310.1111/nph.12469 - DOI - PubMed
    1. Agarwal P. K., Shukla P. S., Gupta K., Jha B. (2013). Bioengineering for salinity tolerance in plants: state of the art. Mol. Biotechnol. 54 102–12310.1007/s12033-012-9538-3 - DOI - PubMed