Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Apr 9:3:519.
doi: 10.1038/bonekey.2014.14. eCollection 2014.

Targeting RANKL in metastasis

Affiliations
Review

Targeting RANKL in metastasis

William C Dougall et al. Bonekey Rep. .

Abstract

Acting through its cognate receptor, receptor activator of nuclear factor-κB (RANK), RANK ligand (RANKL) is an essential mediator of osteoclast function and survival. Preclinical data have now firmly established that blockade of tumor-induced osteoclastogenesis by RANKL inhibition will not only protect against bone destruction but will also inhibit the progression of established bone metastases and delay the formation of de novo bone metastases in cancer models. In patients with bone metastases, skeletal complications are driven by increased osteoclastic activity and may result in pathological fractures, spinal cord compression and the need for radiotherapy to the bone or orthopedic surgery (collectively known as skeletal-related events (SREs)). Denosumab, a fully human monoclonal antibody against RANKL, has been demonstrated to prevent or delay SREs in patients with solid tumors that have metastasized to bone. In addition to its central role in tumor-induced osteolysis, bone destruction and skeletal tumor progression, there is emerging evidence for direct pro-metastatic effects of RANKL, independent of osteoclasts. For example, RANKL also stimulates metastasis via activity on RANK-expressing cancer cells, resulting in increased invasion and migration. Pharmacological inhibition of RANKL may also reduce bone and lung metastasis through blockade of the direct action of RANKL on metastatic cells. This review describes these distinct but potentially overlapping mechanisms by which RANKL may promote metastases.

PubMed Disclaimer

Conflict of interest statement

WD is an employee of Amgen Inc. The remaining authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Interaction with the bone microenvironment supports tumor metastasis. OPG, osteoprotegerin; RANKL, RANK ligand.
Figure 2
Figure 2
Mechanisms of RANKL-mediated promotion of metastasis. EMT, epithelial-to-mesenchymal transition; MMP, matrix metalloproteinase; RANKL, RANK ligand.

Similar articles

Cited by

References

    1. Lacey DL, Boyle WJ, Simonet WS, Kostenuik PJ, Dougall WC, Sullivan JK et al. Bench to bedside: elucidation of the OPG-RANK-RANKL pathway and the development of denosumab. Nat Rev Drug Discov 2012;11:401–419. - PubMed
    1. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T et al. RANK is essential for osteoclast and lymph node development. Genes Dev 1999;13:2412–2424. - PMC - PubMed
    1. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999;397:315–323. - PubMed
    1. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998;93:165–176. - PubMed
    1. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997;89:309–319. - PubMed