Automated synthesis and dosimetry of 6-deoxy-6-[(18)F]fluoro-D-fructose (6-[(18)F]FDF): a radiotracer for imaging of GLUT5 in breast cancer
- PMID: 24795839
- PMCID: PMC3999405
Automated synthesis and dosimetry of 6-deoxy-6-[(18)F]fluoro-D-fructose (6-[(18)F]FDF): a radiotracer for imaging of GLUT5 in breast cancer
Erratum in
-
Erratum: Automated synthesis and dosimetry of 6-deoxy-6-[(18)F]fluoro-D-fructose (6-[(18)F]FDF): a radiotracer for imaging of GLUT5 in breast cancer.Am J Nucl Med Mol Imaging. 2014 Dec 15;5(1):95. eCollection 2015. Am J Nucl Med Mol Imaging. 2014. PMID: 25625031 Free PMC article.
Abstract
6-Deoxy-6-[(18)F]fluoro-D-fructose (6-[(18)F]FDF) is a promising PET radiotracer for imaging GLUT5 in breast cancer. The present work describes GMP synthesis of 6-[(18)F]FDF in an automated synthesis unit (ASU) and dosimetry calculations to determine radiation doses in humans. GMP synthesis and dosimetry calculations are important prerequisites for first-in-human clinical studies of 6-[(18)F]FDF. The radiochemical synthesis of 6-[(18)F]FDF was optimized and adapted to an automated synthesis process using a Tracerlab FXFN ASU (GE Healthcare). Starting from 30 GBq of cyclotron-produced n.c.a. [(18)F]fluoride, 2.9 ± 0.1 GBq of 6-[(18)F]FDF could be prepared within 50 min including HPLC purification resulting in an overall decay-corrected radiochemical yield of 14 ± 3% (n = 11). Radiochemical purity exceeded 95%, and the specific activity was greater than 5.1 GBq/μmol. Sprague-Dawley rats were used for biodistribution experiments, and dynamic and static small animal PET experiments. Biodistribution studies served as basis for allometric extrapolation to the standard man anatomic model and normal organ-absorbed dose calculations using OLINDA/EXM software. The calculated human effective dose for 6-[(18)F]FDF was 0.0089 mSv/MBq. Highest organ doses with a dose equivalent of 0.0315 mSv/MBq in a humans were found in bone. Injection of 370 MBq (10 mCi) of 6-[(18)F]FDF results in an effective whole body radiation dose of 3.3 mSv in humans, a value comparable to that of other (18)F-labeled PET radiopharmaceuticals. The optimized automated synthesis under GMP conditions, the good radiochemical yield and the favorable human radiation dosimetry estimates support application of 6-[(18)F]FDF in clinical trials for molecular imaging of GLUT5 in breast cancer patients.
Keywords: 6-[18F]FDF; GLUT5; Positron emission tomography; automated synthesis; dosimetry.
Figures





Similar articles
-
Erratum: Automated synthesis and dosimetry of 6-deoxy-6-[(18)F]fluoro-D-fructose (6-[(18)F]FDF): a radiotracer for imaging of GLUT5 in breast cancer.Am J Nucl Med Mol Imaging. 2014 Dec 15;5(1):95. eCollection 2015. Am J Nucl Med Mol Imaging. 2014. PMID: 25625031 Free PMC article.
-
Radiopharmacological evaluation of 6-deoxy-6-[18F]fluoro-D-fructose as a radiotracer for PET imaging of GLUT5 in breast cancer.Nucl Med Biol. 2011 May;38(4):461-75. doi: 10.1016/j.nucmedbio.2010.11.004. Epub 2011 Feb 4. Nucl Med Biol. 2011. PMID: 21531283
-
Molecular Imaging of GLUT1 and GLUT5 in Breast Cancer: A Multitracer Positron Emission Tomography Imaging Study in Mice.Mol Pharmacol. 2018 Feb;93(2):79-89. doi: 10.1124/mol.117.110007. Epub 2017 Nov 15. Mol Pharmacol. 2018. PMID: 29142019
-
Expression and function of hexose transporters GLUT1, GLUT2, and GLUT5 in breast cancer-effects of hypoxia.FASEB J. 2018 Sep;32(9):5104-5118. doi: 10.1096/fj.201800360R. Epub 2018 Apr 13. FASEB J. 2018. PMID: 29913554
-
6-Deoxy-6-[18F]fluoro-D-fructose.2011 Jul 10 [updated 2011 Oct 27]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013. 2011 Jul 10 [updated 2011 Oct 27]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013. PMID: 22049574 Free Books & Documents. Review.
Cited by
-
Nuclear Imaging of Glucose Metabolism: Beyond 18F-FDG.Contrast Media Mol Imaging. 2019 Mar 26;2019:7954854. doi: 10.1155/2019/7954854. eCollection 2019. Contrast Media Mol Imaging. 2019. PMID: 31049045 Free PMC article. Review.
-
PET Imaging of Fructose Metabolism in a Rodent Model of Neuroinflammation with 6-[18F]fluoro-6-deoxy-D-fructose.Molecules. 2022 Dec 3;27(23):8529. doi: 10.3390/molecules27238529. Molecules. 2022. PMID: 36500626 Free PMC article.
-
Differential effects of excess high-fructose corn syrup on the DNA methylation of hippocampal neurotrophic factor in childhood and adolescence.PLoS One. 2022 Jun 17;17(6):e0270144. doi: 10.1371/journal.pone.0270144. eCollection 2022. PLoS One. 2022. PMID: 35714129 Free PMC article.
-
Novel Approaches to Imaging Tumor Metabolism.Cancer J. 2015 May-Jun;21(3):165-73. doi: 10.1097/PPO.0000000000000111. Cancer J. 2015. PMID: 26049695 Free PMC article. Review.
-
GLUT5-overexpression-related tumorigenic implications.Mol Med. 2024 Aug 6;30(1):114. doi: 10.1186/s10020-024-00879-8. Mol Med. 2024. PMID: 39107723 Free PMC article. Review.
References
-
- Debergh I, Vanhove C, Ceelen W. Innovation in cancer imaging. Eur Surg Res. 2012;48:121–30. - PubMed
-
- Groheux D, Espié M, Giacchetti S, Hindié E. Performance of FDG PET/CT in the clinical management of breast cancer. Radiology. 2013;266:388–405. - PubMed
-
- Cintolo JA, Tchou J, Pryma DA. Diagnostic and prognostic application of positron emission tomography in breast imaging: emerging uses and the role of PET in monitoring treatment response. Breast Cancer Res Treat. 2013;138:331–46. - PubMed
-
- Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol. 2005;202:654–62. - PubMed
LinkOut - more resources
Full Text Sources