Targeted deep sequencing of HIV-1 using the IonTorrentPGM platform
- PMID: 24797459
- PMCID: PMC4219931
- DOI: 10.1016/j.jviromet.2014.04.017
Targeted deep sequencing of HIV-1 using the IonTorrentPGM platform
Abstract
The characterization of mixed HIV-1 populations is a key question in clinical and basic research settings. This can be achieved through targeted deep sequencing (TDS), where next-generation sequencing is used to examine in depth a sub-genomic region of interest. This study explores the suitability of IonTorrent PGM(LifeTechnologies) for the TDS-based analysis of HIV-1 evolution. Using laboratory reagents and primary specimens sampled at pre-peak viremia the error rates from misincorporation and in vitro recombination were <0.5%. The sequencing error rate was 2- to 3-fold higher in/around homopolymeric tracts, and could be discerned from true polymorphism using bidirectional sequencing. The limit of detection of complex variants was further lowered by using haplotyping. The application of this system was illustrated on primary samples from an individual infected with HIV-1 followed from pre-peak viremia through six months post-acquisition. TDS provided an augmented view of the extent of genetic diversity, the covariation among polymorphisms, the evolutionary pathways, and the boundaries of the mutational space explored by the viral swarm. Based on its performance, the system can be applied for the characterization of minor viral variants in support of studies of viral evolution, which can inform the rational design of the next generation of vaccines and therapeutics.
Keywords: HIV-1; IonTorrent; Molecular evolution; Next-generation sequencing; Targeted deep sequencing.
Copyright © 2014 Elsevier B.V. All rights reserved.
Conflict of interest statement
Figures
References
-
- Armenia D, Vandenbroucke I, Fabeni L, Van Marck H, Cento V, D’Arrigo R, Van Wesenbeeck L, Scopelliti F, Micheli V, Bruzzone B, Lo Caputo S, Aerssens J, Rizzardini G, Tozzi V, Narciso P, Antinori A, Stuyver L, Perno CF, Ceccherini-Silberstein F. Study of genotypic and phenotypic HIV-1 dynamics of integrase mutations during raltegravir treatment: a refined analysis by ultra-deep 454 pyrosequencing. J Infect Dis. 2012;205:557–67. - PMC - PubMed
-
- Brockman MA, Schneidewind A, Lahaie M, Schmidt A, Miura T, Desouza I, Ryvkin F, Derdeyn CA, Allen S, Hunter E, Mulenga J, Goepfert PA, Walker BD, Allen TM. Escape and compensation from early HLA-B57-mediated cytotoxic T-lymphocyte pressure on human immunodeficiency virus type 1 Gag alter capsid interactions with cyclophilin A. J Virol. 2007;81:12608–18. - PMC - PubMed
-
- Cai F, Chen H, Hicks CB, Bartlett JA, Zhu J, Gao F. Detection of minor drug-resistant populations by parallel allele-specific sequencing. Nat Methods. 2007;4:123–5. - PubMed
-
- Chang E. Next-Generation Sequencing Methods: Impact of Sequencing Accuracy on SNP Discovery. In: Komar A, editor. Single Nucleotide Polymorphisms. Humana Press; New York, NY: 2009. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
