Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jul 15;545(1):72-9.
doi: 10.1016/j.gene.2014.05.005. Epub 2014 May 2.

Creatine prevents the imbalance of redox homeostasis caused by homocysteine in skeletal muscle of rats

Affiliations

Creatine prevents the imbalance of redox homeostasis caused by homocysteine in skeletal muscle of rats

Janaína Kolling et al. Gene. .

Abstract

Homocystinuria is a neurometabolic disease caused by severe deficiency of cystathionine beta-synthase activity, resulting in severe hyperhomocysteinemia. Affected patients present several symptoms including a variable degree of motor dysfunction, being that the pathomechanism is not fully understood. In the present study we investigated the effect of chronic hyperhomocysteinemia on some parameters of oxidative stress, namely 2'7'dichlorofluorescein (DCFH) oxidation, levels of thiobarbituric acid-reactive substances (TBARS), antioxidant enzyme activities (SOD, CAT and GPx), reduced glutathione (GSH), total sulfhydryl and carbonyl content, as well as nitrite levels in soleus skeletal muscle of young rats subjected to model of severe hyperhomocysteinemia. We also evaluated the effect of creatine on biochemical alterations elicited by hyperhomocysteinemia. Wistar rats received daily subcutaneous injection of homocysteine (0.3-0.6 μmol/g body weight), and/or creatine (50mg/kg body weight) from their 6th to the 28th days age. Controls and treated rats were decapitated at 12h after the last injection. Chronic homocysteine administration increased 2'7'dichlorofluorescein (DCFH) oxidation, an index of production of reactive species and TBARS levels, an index of lipoperoxidation. Antioxidant enzyme activities, such as SOD and CAT were also increased, but GPx activity was not altered. The content of GSH, sulfhydril and carbonyl were decreased, as well as levels of nitrite. Creatine concurrent administration prevented some homocysteine effects probably by its antioxidant properties. Our data suggest that the oxidative insult elicited by chronic hyperhomocystenemia may provide insights into the mechanisms by which homocysteine exerts its effects on skeletal muscle function. Creatine prevents some alterations caused by homocysteine.

Keywords: Creatine; Oxidative stress; Severe hyperhomocysteinemia; Soleus skeletal muscle.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources