Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Mar;35(3):687-94.
doi: 10.1111/liv.12581. Epub 2014 May 30.

Stem cells with decellularized liver scaffolds in liver regeneration and their potential clinical applications

Affiliations
Review

Stem cells with decellularized liver scaffolds in liver regeneration and their potential clinical applications

Qian Zhou et al. Liver Int. 2015 Mar.

Abstract

End-stage hepatic failure is a potentially life-threatening condition for which orthotopic liver transplantation (OLT) is the only effective treatment. However, a shortage of available donor organs for transplantation each year results in the death of many patients waiting for liver transplantation. Cell-based therapies and hepatic tissue engineering have been considered as alternatives to liver transplantation. However, primary hepatocyte transplantation has rarely produced therapeutic effects because mature hepatocytes cannot be effectively expanded in vitro, and the availability of hepatocytes is often limited by shortages of donor organs. Decellularization is an attractive technique for scaffold preparation in stem cell-based liver engineering, as the resulting material can potentially retain the liver architecture, native vessel network and specific extracellular matrix (ECM). Thus, the reconstruction of functional and practical liver tissue using decellularized scaffolds becomes possible. This review focuses on the current understanding of liver tissue engineering, whole-organ liver decellularization techniques, cell sources for recellularization and potential clinical applications and challenges.

Keywords: endothelialisation; liver perfusion; mesenchymal stem cells; scaffold; surface modification; transplantation.

PubMed Disclaimer

Publication types

LinkOut - more resources