Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 May 6;9(5):e96800.
doi: 10.1371/journal.pone.0096800. eCollection 2014.

Tualang honey improves human corneal epithelial progenitor cell migration and cellular resistance to oxidative stress in vitro

Affiliations

Tualang honey improves human corneal epithelial progenitor cell migration and cellular resistance to oxidative stress in vitro

Jun Jie Tan et al. PLoS One. .

Erratum in

  • PLoS One. 2014;9(8):e105233

Abstract

Stem cells with enhanced resistance to oxidative stress after in vitro expansion have been shown to have improved engraftment and regenerative capacities. Such cells can be generated by preconditioning them with exposure to an antioxidant. In this study we evaluated the effects of Tualang honey (TH), an antioxidant-containing honey, on human corneal epithelial progenitor (HCEP) cells in culture. Cytotoxicity, gene expression, migration, and cellular resistance to oxidative stress were evaluated. Immunofluorescence staining revealed that HCEP cells were holoclonal and expressed epithelial stem cell marker p63 without corneal cytokeratin 3. Cell viability remained unchanged after cells were cultured with 0.004, 0.04, and 0.4% TH in the medium, but it was significantly reduced when the concentration was increased to 3.33%. Cell migration, tested using scratch migration assay, was significantly enhanced when cells were cultured with TH at 0.04% and 0.4%. We also found that TH has hydrogen peroxide (H2O2) scavenging ability, although a trace level of H2O2 was detected in the honey in its native form. Preconditioning HCEP cells with 0.4% TH for 48 h showed better survival following H2O2-induced oxidative stress at 50 µM than untreated group, with a significantly lower number of dead cells (15.3 ± 0.4%) were observed compared to the untreated population (20.5 ± 0.9%, p<0.01). Both TH and ascorbic acid improved HCEP viability following induction of 100 µM H2O2, but the benefit was greater with TH treatment than with ascorbic acid. However, no significant advantage was demonstrated using 5-hydroxymethyl-2-furancarboxaldehyde, a compound that was found abundant in TH using GC/MS analysis. This suggests that the cellular anti-oxidative capacity in HCEP cells was augmented by native TH and was attributed to its antioxidant properties. In conclusion, TH possesses antioxidant properties and can improve cell migration and cellular resistance to oxidative stress in HCEP cells in vitro.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Representative confocal images of immunofluorescence-labelled HCEP cells.
HCEP cells did not express the cornea-specific marker cytokeratin 3 (green) (A) but did express nuclear p63 transcription factor (green) (B). HCEP cells stained with AlexaFluor488 secondary antibody without any primary antibody were served as the negative control (C). Abbreviations: DAPI, 4′,6-diamidino-2-phenylindole.
Figure 2
Figure 2. HCEP cell viability after treatment with 0, 0.004, 0.04, 0.4, and 3.33% Tualang honey for 48 h.
Significant lower viability was observed in HCEP cells treated with 3.33% Tualang honey compared to the other treatments. ***p<0.001.
Figure 3
Figure 3. mRNA expression of Tualang honey treated HCEP cells.
(A) RTPCR showed abcg and connexion-43 mRNA expressions (normalised to β-actin expression) but not cytokeratin-12 expression in HCEP cells. (B) abcg mRNA expression was down-regulated in HCEP cells treated with 3.33% Tualang honey, but the mRNA for connexin-43 remained unchanged in all groups. *p<0.05 compared to untreated control (0%). Abbreviations: abcg, ATP-binding cassette transporter; Cx-43, connexion-43.
Figure 4
Figure 4. HCEP cell migration following treatment with Tualang honey.
(A) Representative images of the HCEP cell scratch migration assay at baseline and after 48 h. (B) The gap size occupied by HCEP cells after 48 h was largest in the 0.4% Tualang honey treatment (*p<0.05; **p<0.01 compared to untreated control).
Figure 5
Figure 5. Effects of Tualang honey on hydrogen peroxide and HCEP cell resistance to oxidative stress.
(A) In vitro inhibitory effects of Tualang honey at 0.04, 0.4, and 4% (v/v) against 5, 10, 20, 30, and 40 µM H2O2. (B) HCEP viability in response to H2O2 induction at 0, 10, 20, 50, 100 and 200 µM after 24 hours using AlamarBlue assay. (C) Flow cytometric analysis showed the total number of PI-stained dead cells in Tualang honey treated HCEP cells in response to exposure to 50 µM H2O2 after 24 h (**p<0.01 compared to untreated control). Abbreviation: PI, propidium iodide.
Figure 6
Figure 6. GC-MS analysis of Tualang honey.
(A) Region A in the chromatogram of 20% Tualang honey diluted in distilled water. (B) Region A was enlarged and analysed further to identify the phytochemical constituents in Tualang Honey based on the NIST08 Mass Spectral Library.
Figure 7
Figure 7. AlamarBlue cell viability assay of Tualang honey (0.4%), ascorbic acid (100 µM) and 5HMF(100 µM) treated HCEP cells after H2O2 induction.
The resistance of treated cells against H2O2 was tested at (A) 0, (B) 50 and (C) 100 µM for 24 h. Significant difference in viability was found between Tualang honey and ascorbic acid-treated group using ANOVA with Tukey multiple comparisons test (*p<0.05; ***p<0.01 compared to untreated control). Abbreviation: 5HMF, 5-hydroxymethyl-2-furancarboxaldehyde.

Similar articles

Cited by

References

    1. Chen Z, de Paiva CS, Luo L, Kretzer FL, Pflugfelder SC, et al. (2004) Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells 22: 355–366. - PMC - PubMed
    1. Kim HS, Jun Song X, de Paiva CS, Chen Z, Pflugfelder SC, et al. (2004) Phenotypic characterization of human corneal epithelial cells expanded ex vivo from limbal explant and single cell cultures. Exp Eye Res 79: 41–49. - PMC - PubMed
    1. He Y, Pan Z, Luo F (2012) A Novel PAX6 Mutation in Chinese Patients with Severe Congenital Aniridia. Current Eye Research 37: 879–883. - PubMed
    1. Smith W, Lange J, Sturm A, Tanner S, Mauger T (2012) Familial peripheral keratopathy without PAX6 mutation. Cornea 31: 130–133. - PubMed
    1. Le Belle JE, Orozco NM, Paucar AA, Saxe JP, Mottahedeh J, et al. (2011) Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8: 59–71. - PMC - PubMed

Publication types

MeSH terms