Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014:7:97-114.
doi: 10.1109/RBME.2013.2295804.

Methods for nuclei detection, segmentation, and classification in digital histopathology: a review-current status and future potential

Review

Methods for nuclei detection, segmentation, and classification in digital histopathology: a review-current status and future potential

Humayun Irshad et al. IEEE Rev Biomed Eng. 2014.

Abstract

Digital pathology represents one of the major evolutions in modern medicine. Pathological examinations constitute the gold standard in many medical protocols, and also play a critical and legal role in the diagnosis process. In the conventional cancer diagnosis, pathologists analyze biopsies to make diagnostic and prognostic assessments, mainly based on the cell morphology and architecture distribution. Recently, computerized methods have been rapidly evolving in the area of digital pathology, with growing applications related to nuclei detection, segmentation, and classification. In cancer research, these approaches have played, and will continue to play a key (often bottleneck) role in minimizing human intervention, consolidating pertinent second opinions, and providing traceable clinical information. Pathological studies have been conducted for numerous cancer detection and grading applications, including brain, breast, cervix, lung, and prostate cancer grading. Our study presents, discusses, and extracts the major trends from an exhaustive overview of various nuclei detection, segmentation, feature computation, and classification techniques used in histopathology imagery, specifically in hematoxylin-eosin and immunohistochemical staining protocols. This study also enables us to measure the challenges that remain, in order to reach robust analysis of whole slide images, essential high content imaging with diagnostic biomarkers and prognosis support in digital pathology.

PubMed Disclaimer

Publication types