Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Aug 15;59(4):569-77.
doi: 10.1093/cid/ciu337. Epub 2014 May 6.

Immune correlates of protection in human invasive aspergillosis

Affiliations
Review

Immune correlates of protection in human invasive aspergillosis

Jose F Camargo et al. Clin Infect Dis. .

Abstract

Protective immunity against Aspergillus depends on a highly coordinated interaction between the innate and adaptive arms of the immune system. Fungal recognition via pattern recognition receptors, such as pentraxin 3, dectin-1, and Toll-like receptors, leads to complement activation, phagocytosis, and killing of ingested fungi. Aspergillus-specific T-helper 1 and 17 cells produce cytokines such as interferon γ and interleukin 17, which facilitate macrophage activation and neutrophil recruitment, respectively. Genetic (or drug-induced) defects in components of these networks of antifungal immunity result in increased risk of invasive aspergillosis after chemotherapy or transplantation. We review the most important genetic, immunological, and pharmacological factors that influence human susceptibility to Aspergillus and discuss the potential role of immune biomarkers in risk stratification strategies that facilitate individualized antifungal therapy/prophylaxis in immunocompromised hosts.

Keywords: PTX3; Th17; biomarker; human susceptibility; immune response to Aspergillus.

PubMed Disclaimer

MeSH terms

LinkOut - more resources