Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Apr 7;6(1):e2014030.
doi: 10.4084/MJHID.2014.030. eCollection 2014.

Antifungal susceptibility testing: current role from the clinical laboratory perspective

Affiliations
Review

Antifungal susceptibility testing: current role from the clinical laboratory perspective

Brunella Posteraro et al. Mediterr J Hematol Infect Dis. .

Abstract

Despite availability of many antifungal agents, antifungal clinical resistance occurs, perhaps as a consequence of an infecting organism found to be resistant in vitro to one or more antifungals tested. From what derives the important current role of the in vitro antifungal susceptibility testing (AFST), that is to determine which agents are like to be scarcely effective for a given infection. Thus, AFST results, if timely generated by the clinical microbiology laboratory and communicated to clinicians, can aid them in the therapeutic decision making, especially for difficult-to-treat invasive candidiasis and aspergillosis. Although recently refined AFST methods are commercially available for allowing a close antifungal resistance surveillance in many clinical setting, novel assays such as flow cytometry or MALDI-TOF mass spectrometry are upcoming tools for AFST. Based on short-time antifungal drug exposure of fungal isolates, these assays could provide a reliable means for quicker and sensitive assessment of AFST.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Kanafani ZA, Perfect JR. Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impact. Clin Infect Dis. 2008;46:120–128. doi: 10.1086/524071. - DOI - PubMed
    1. Karthaus M, Rüping MJ, Cornely OA, Steinbach A, Groll AH, Lass-Flörl C, Ostermann H, Ruhnke M, Vehreschild JJ. Current issues in the clinical management of invasive Candida infections--the AGIHO, DMykG, ÖGMM and PEG web-based survey and expert consensus conference 2009. Mycoses. 2011;54:e546–e556. doi: 10.1111/j.1439-0507.2010.01988.x. - DOI - PubMed
    1. Walsh TJ, Gamaletsou MN. Treatment of fungal disease in the setting of neutropenia. Hematology Am Soc Hematol Educ Program. 2013;2013:423–427. doi: 10.1182/asheducation-2013.1.423. - DOI - PubMed
    1. Cordonnier C, Pautas C, Maury S, Vekhoff A, Farhat H, Suarez F, Dhédin N, Isnard F, Ades L, Kuhnowski F, Foulet F, Kuentz M, Maison P, Bretagne S, Schwarzinger M. Empirical versus preemptive antifungal therapy for high-risk, febrile, neutropenic patients: a randomized, controlled trial. Clin Infect Dis. 2009;48:1042–1051. doi: 10.1086/597395. - DOI - PubMed
    1. Cornely OA, Aversa F, Cook P, Jones B, Michallet M, Shea T, Vallejo C. Evaluating the role of prophylaxis in the management of invasive fungal infections in patients with hematologic malignancy. Eur J Haematol. 2011;87:289–301. doi: 10.1111/j.1600-0609.2011.01682.x. - DOI - PubMed