Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 May 6;106(9):L33-5.
doi: 10.1016/j.bpj.2014.03.019.

Tracking single serotonin transporter molecules at the endoplasmic reticulum and plasma membrane

Affiliations

Tracking single serotonin transporter molecules at the endoplasmic reticulum and plasma membrane

Andreas Anderluh et al. Biophys J. .

Abstract

Transmembrane proteins are synthesized and folded in the endoplasmic reticulum (ER), an interconnected network of flattened sacs or tubes. Up to now, this organelle has eluded a detailed analysis of the dynamics of its constituents, mainly due to the complex three-dimensional morphology within the cellular cytosol, which precluded high-resolution, single-molecule microscopy approaches. Recent evidences, however, pointed out that there are multiple interaction sites between ER and the plasma membrane, rendering total internal reflection microscopy of plasma membrane proximal ER regions feasible. Here we used single-molecule fluorescence microscopy to study the diffusion of the human serotonin transporter at the ER and the plasma membrane. We exploited the single-molecule trajectories to map out the structure of the ER close to the plasma membrane at subdiffractive resolution. Furthermore, our study provides a comparative picture of the diffusional behavior in both environments. Under unperturbed conditions, the majority of proteins showed similar mobility in the two compartments; at the ER, however, we found an additional 15% fraction of molecules moving with 25-fold faster mobility. Upon degradation of the actin skeleton, the diffusional behavior in the plasma membrane was strongly influenced, whereas it remained unchanged in the ER.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Schematics of the plasma membrane (PM) and a part of the ER containing mGFP-SERT-wt or the ER-retained eYFP-SERT-ΔC30 mutant, respectively. Both can be excited by total internal reflection fluorescence (TIRF) excitation. Experiments were carried out either on cells expressing mGFP-SERT-wt or eYFP-SERT-ΔC30.
Figure 2
Figure 2
Superresolution and tracking data at the ER and the plasma membrane. Superresolution images are shown for the ER-retained SERT mutant eYFP-SERT-ΔC30 (A) and for mGFP-SERT-wt in the plasma membrane (B). (C and D) Diffusion coefficients of eYFP-SERT-ΔC30 (C) and mGFP-SERT-wt (D) are shown as normalized histograms before (blue) and after (red) Cytochalasin D treatment. Data were fitted by Gaussian mobility distributions (see Table S1 in the Supporting Material for the fit results).
Figure 3
Figure 3
Ripley’s K function analysis of the different mobility fractions in the ER. For the cell presented in Fig. 2, the first position of every slow (D < 1 μm2/s; red) and fast (D > 1 μm2/s; blue) trajectory was plotted in panel A. Contour lines indicate regions of ER attachment to the plasma membrane. In panel B, the point-correlation function L(r)−r is plotted for the slow (red) and fast (blue) fraction. Furthermore, the correlation between fast versus slow is plotted (green). All three curves show a peak at ∼450 nm, which agrees with the extensions of the ER attachment zones.

References

    1. English A.R., Voeltz G.K. Endoplasmic reticulum structure and interconnections with other organelles. Cold Spring Harb. Perspect. Biol. 2013;5:a013227. - PMC - PubMed
    1. Sbalzarini I.F., Mezzacasa A., Koumoutsakos P. Effects of organelle shape on fluorescence recovery after photobleaching. Biophys. J. 2005;89:1482–1492. - PMC - PubMed
    1. Thompson R.E., Larson D.R., Webb W.W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 2002;82:2775–2783. - PMC - PubMed
    1. Wieser S., Schütz G.J. Tracking single molecules in the live cell plasma membrane—do’s and don’t’s. Methods. 2008;46:131–140. - PubMed
    1. Anderluh A., Klotzsch E., Schütz G.J. Single molecule analysis reveals coexistence of stable serotonin transporter monomers and oligomers in the live cell plasma membrane. J. Biol. Chem. 2014;289:4387–4394. - PMC - PubMed

Publication types

Substances

LinkOut - more resources