Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Jul-Sep;35(3):354-6.
doi: 10.1097/00002480-198907000-00059.

Molecular understanding of cellular adhesion on artificial surfaces

Affiliations

Molecular understanding of cellular adhesion on artificial surfaces

Y Takemoto et al. ASAIO Trans. 1989 Jul-Sep.

Abstract

This study was conducted to clarify cellular adhesion mechanisms of blood cells (platelets [PLT] and white blood cells [WBC]) and vascular endothelial cells at the molecular level. This study indicated that the adhesion of three cellular systems to proteins such as fibronectin and fibrinogen proceeds via the RGD (Arg-Gly-Asp) ligand-receptor interaction, in which the RGD tripeptidyl sequence is the minimal amino acid sequence common to adhesive proteins. This was evident from the dose-dependent inhibitory effect of RGD-containing peptide on cellular adhesion. Additional supporting evidence was the presence of PLT and WBC receptors, which molecularly recognize RGD, verified by fluorescein-labelled RGD-containing peptide. The adhesion of vascular endothelial cells was also predominantly controlled by the ligand-receptor mechanism, and participation of complement activation on WBC adhesion was demonstrated as well. The adhesion of WBCs on surface hydroxyl group-bearing polymers proceeded via the CR3 receptor-C3b ligand interaction, in which activated complement factor C3b is chemically fixed upon complement activation. Thus, the molecular understanding of cellular adhesion mechanisms provide the basis of biocompatibility for implantation and extracorporeal circulation, as well as molecular design of artificial and bioartificial organs.

PubMed Disclaimer

Similar articles

MeSH terms

LinkOut - more resources