Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Dec 25;264(36):21737-47.

Disulfide linkage of biotin identifies a 106-kDa Ca2+ release channel in sarcoplasmic reticulum

Affiliations
  • PMID: 2480955
Free article

Disulfide linkage of biotin identifies a 106-kDa Ca2+ release channel in sarcoplasmic reticulum

N F Zaidi et al. J Biol Chem. .
Free article

Abstract

Reactive disulfide reagents (RDSs) with a biotin moiety have been synthesized and found to cause Ca2+ release from sarcoplasmic reticulum (SR) vesicles. The RDSs oxidize SH sites on SR proteins via a thiol-disulfide exchange, with the formation of mixed disulfide bonds between SR proteins and biotin. Biotinylated RDSs identified a 106-kDa protein which was purified by biotin-avidin chromatography. Disulfide reducing agents, like dithiothreitol, reverse the effect of RDSs and thus promoted active re-uptake of Ca2+ and dissociated biotin from the labeled protein indicating that biotin was covalently linked to the 106-kDa protein via a disulfide bond. Several lines of evidence indicate that this protein is not Ca2+, Mg2+-ATPase and is not a proteolytic fragment or a subunit of the 400-kDa Ca2+-ryanodine receptor complex (RRC). Monoclonal antibodies against the ATPase did not cross-react with the 106-kDa protein, and polyclonal antibodies against the 106-kDa did not cross-react with either the ATPase or the 400-kDa RRC. RDSs did not label the 400-kDa RRC with biotin. Linear sucrose gradients used to purify the RRC show that the 106-kDa protein migrated throughout 5-20% linear sucrose gradients, including the high sucrose density protein fractions containing 400-kDa RRC. Protease inhibitors diisopropylfluorophosphate used to prevent proteolysis of 400-kDa proteins did not alter the migration of 106-kDa in sucrose gradients nor the patterns of biotin labeling of the 106-kDa protein. Incorporation of highly purified 106-kDa protein (free of RRC) in planar bilayers revealed cationic channels with large Na+ (gNa+ = 375 +/- 15 pS) and Ca2+ (gCa2+ = 107.7 +/- 12 pS) conductances which were activated by micromolar [Ca2+]free or millimolar [ATP] and blocked by micromolar ruthenium red or millimolar [Mg2+]. Thus, the SR contains a sulfhydryl-activated 106-kDa Ca2+ channel with apparently similar characteristics to the 400-kDa "feet" proteins.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources