Early effect of tidal volume on lung injury biomarkers in surgical patients with healthy lungs
- PMID: 24809976
- PMCID: PMC4165799
- DOI: 10.1097/ALN.0000000000000301
Early effect of tidal volume on lung injury biomarkers in surgical patients with healthy lungs
Abstract
Background: The early biological impact of short-term mechanical ventilation on healthy lungs is unknown. The authors aimed to characterize the immediate tidal volume (VT)-related changes on lung injury biomarkers in patients with healthy lungs and low risk of pulmonary complications.
Methods: Twenty-eight healthy patients for knee replacement surgery were prospectively randomized to volume-controlled ventilation with VT 6 (VT6) or 10 (VT10) ml/kg predicted body weight. General anesthesia and other ventilatory parameters (positive end-expiratory pressure, 5 cm H2O, FIO2, 0.5, respiratory rate titrated for normocapnia) were managed similarly in the two groups. Exhaled breath condensate and blood samples were collected for nitrite, nitrate, tumor necrosis factor-α, interleukins-1β, -6, -8, -10, -11, neutrophil elastase, and Clara Cell protein 16 measurements, at the onset of ventilation and 60 min later.
Results: No significant differences in biomarkers were detected between the VT groups at any time. The coefficient of variation of exhaled breath condensate nitrite and nitrate decreased in the VT6 but increased in the VT10 group after 60-min ventilation. Sixty-minute ventilation significantly increased plasma neutrophil elastase levels in the VT6 (35.2 ± 30.4 vs. 56.4 ± 51.7 ng/ml, P = 0.008) and Clara Cell protein 16 levels in the VT10 group (16.4 ± 8.8 vs. 18.7 ± 9.5 ng/ml, P = 0.015). Exhaled breath condensate nitrite correlated with plateau pressure (r = 0.27, P = 0.042) and plasma neutrophil elastase (r = 0.44, P = 0.001). Plasma Clara Cell protein 16 correlated with compliance (r = 0.34, P = 0.014).
Conclusions: No tidal volume-related changes were observed in the selected lung injury biomarkers of patients with healthy lungs after 60-min ventilation. Plasma neutrophil elastase and plasma Clara Cell protein 16 might indicate atelectrauma and lung distention, respectively.
Conflict of interest statement
Figures





Comment in
-
Technique and time range used for early detection of inflammation after volutrauma.Anesthesiology. 2015 May;122(5):1180-1. doi: 10.1097/ALN.0000000000000621. Anesthesiology. 2015. PMID: 25985028 No abstract available.
-
In reply.Anesthesiology. 2015 May;122(5):1181. doi: 10.1097/ALN.0000000000000620. Anesthesiology. 2015. PMID: 25985029 No abstract available.
References
-
- Lellouche F, Dionne S, Simard S, Bussieres J, Dagenais F. High tidal volumes in mechanically ventilated patients increase organ dysfunction after cardiac surgery. Anesthesiology. 2012;116:1072–82. - PubMed
-
- Korovesi I, Papadomichelakis E, Orfanos SE, Giamarellos-Bourboulis EJ, Livaditi O, Pelekanou A, Sotiropoulou C, Koutsoukou A, Dimopoulou I, Ekonomidou F, Psevdi E, Armaganidis A, Roussos C, Marczin N, Kotanidou A. Exhaled breath condensate in mechanically ventilated brain-injured patients with no lung injury or sepsis. Anesthesiology. 2011;114:1118–29. - PubMed
-
- Gajic O, Dara SI, Mendez JL, Adesanya AO, Festic E, Caples SM, Rana R, St Sauver JL, Lymp JF, Afessa B, Hubmayr RD. Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med. 2004;32:1817–24. - PubMed
-
- Altemeier WA, Matute-Bello G, Frevert CW, Kawata Y, Kajikawa O, Martin TR, Glenny RW. Mechanical ventilation with moderate tidal volumes synergistically increases lung cytokine response to systemic endotoxin. Am J Physiol Lung Cell Mol Physiol. 2004;287:L533–42. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous