Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 May:412:65-91.
doi: 10.1113/jphysiol.1989.sp017604.

Dihydropyridine inhibition of single calcium channels and contraction in rabbit mesenteric artery depends on voltage

Affiliations

Dihydropyridine inhibition of single calcium channels and contraction in rabbit mesenteric artery depends on voltage

M T Nelson et al. J Physiol. 1989 May.

Abstract

1. The effects of membrane potential and the dihydropyridine calcium channel inhibitor, nisoldipine, on single calcium channels in the presence of Bay K 8644 and contraction in the presence and absence of Bay K 8644 were examined in the rabbit mesenteric artery. 2. Membrane depolarization decreased the peak average single calcium channel current that could be elicited by a test pulse to 0 mV. The steady-state inactivation relationship could be described by the Boltzmann equation, [1 + exp[Vm-V0.5)/k)]-1, with a steepness factor, k, of 7.1 mV. Nisoldipine shifted the steady-state inactivation curve to more negative potentials by increasing the fraction of test pulses without openings. 3. The degree of nisoldipine inhibition of average single calcium channel currents increased with membrane depolarization. Depolarization of the holding potential from -100 to -55 mV decreased the concentration of nisoldipine needed for 50% inhibition (Kapp) from 12.1 to 1.9 nM in the presence of 1 microM-Bay K 8644. 4. Membrane depolarization by external potassium (K+) of the intact artery in the presence of nisoldipine decreased contractions evoked by depolarizing test pulses. The relationship between membrane potential and contraction could be empirically described by the Boltzmann equation, with a steepness factor, k, of 7.1 mV. Increasing the nisoldipine concentration from 0.25 to 2.0 nM shifted the mid-point of this relationship from -20.5 to -33.0 mV, without affecting the steepness factor. 5. Nisoldipine inhibition of contraction increased with membrane depolarization. Membrane depolarization from -68.6 to -30.0 mV decreased the Kapp of nisoldipine for contractions from 3.02 to 0.69 nM. Bay K 8644 (1 microM) elevated Kapp about 9.3-fold at 5 mM-K+. In the presence of Bay K 8644, membrane depolarization from -68.6 to -30.0 mV reduced Kapp from 28.4 to 4.0 nM. 6. In the presence of nisoldipine, the effect of membrane depolarization on the time course of development of inhibition was examined. In 3 nM-nisoldipine, after membrane depolarization with 20 mM-K+, the time course of development of inhibition of force could be described by a single exponential with a time constant of 16.5 min. Membrane depolarization to a more positive potential accelerated the development of inhibition. 7. The results were interpreted by a model in which nisoldipine binds with higher affinity to the inactivated state than to the resting state of calcium channels in the mesenteric artery. The approach presented here can be used to estimate the properties of steady-state calcium channel inactivation and dihydropyridine interactions in smooth muscle cells in the intact artery under physiological conditions.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

Cited by

References

    1. Agents Actions. 1972;2(5):257-60 - PubMed
    1. Acta Pharmacol Toxicol (Copenh). 1978 Aug;43(2):137-44 - PubMed
    1. Physiol Rev. 1979 Jul;59(3):606-718 - PubMed
    1. Arzneimittelforschung. 1980;30(12):2144-62 - PubMed
    1. Pflugers Arch. 1981 Aug;391(2):85-100 - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources