Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Jul;21(4):333-40.
doi: 10.1097/MOH.0000000000000049.

Common progenitor cells in mature B-cell malignancies: implications for therapy

Affiliations
Review

Common progenitor cells in mature B-cell malignancies: implications for therapy

Michael R Green et al. Curr Opin Hematol. 2014 Jul.

Abstract

Purpose of review: This review summarizes the recent progress in defining the patterns of genetic evolution giving rise to relapse in follicular lymphoma and multiple myeloma, and discusses their implications with respect to 'personalized medicine'.

Recent findings: High-throughput sequencing studies have uncovered a large degree of clonal heterogeneity within tumors, and found that subclones have a variable contribution to relapse. Recent studies aimed at defining patterns of clonal evolution have revealed that serial tumors in some malignancies share their ancestry in a less evolved common progenitor cell (CPC) that bears only a subset of the mutations that are present in the fully evolved tumors that present clinically. This pattern of 'divergent evolution' means that the majority of 'actionable mutations' in tumor specimens are absent within the progenitors that give rise to relapse.

Summary: Follicular lymphoma and multiple myeloma are clinically, biologically and genetically distinct mature B-cell malignancies. However, recent studies have found them to share important similarities in their patterns of genetic evolution. Tumor cells that constitute subclonal populations within these tumors, or between consecutive tumors, share their origins within a genetically less evolved common progenitor cell. This pattern of evolution indicates that current therapies are unable to eradicate these less evolved populations that are at the root of relapse. This suggests that in order to obtain the best results with modern 'targeted therapies' that are directed towards 'actionable mutations', these mutations should be considered within the context of the evolutionary stage at which mutations are acquired, not simply on a presence or absence basis.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources