MUS81-EME2 promotes replication fork restart
- PMID: 24813886
- PMCID: PMC5092538
- DOI: 10.1016/j.celrep.2014.04.007
MUS81-EME2 promotes replication fork restart
Abstract
Replication forks frequently stall at regions of the genome that are difficult to replicate or contain lesions that cause replication blockage. An important mechanism for the restart of a stalled fork involves endonucleolytic cleavage that can lead to fork restoration and replication progression. Here, we show that the structure-selective endonuclease MUS81-EME2 is responsible for fork cleavage and restart in human cells. The MUS81-EME2 protein, whose actions are restricted to S phase, is also responsible for telomere maintenance in telomerase-negative ALT (Alternative Lengthening of Telomeres) cells. In contrast, the G2/M functions of MUS81, such as the cleavage of recombination intermediates and fragile site expression, are promoted by MUS81-EME1. These results define distinct and temporal roles for MUS81-EME1 and MUS81-EME2 in the maintenance of genome stability.
Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Figures
 
              
              
              
              
                
                
                 
              
              
              
              
                
                
                 
              
              
              
              
                
                
                 
              
              
              
              
                
                
                 
              
              
              
              
                
                
                References
- 
    - Bayani J., Squire J.A. Sister chromatid exchange. Curr. Protoc. Cell Biol. 2005;Chapter 22 Unit 22.27. - PubMed
 
- 
    - Blasco M.A., Lee H.W., Hande M.P., Samper E., Lansdorp P.M., DePinho R.A., Greider C.W. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell. 1997;91:25–34. - PubMed
 
- 
    - Boddy M.N., Gaillard P.H.L., McDonald W.H., Shanahan P., Yates J.R., 3rd, Russell P. Mus81-Eme1 are essential components of a Holliday junction resolvase. Cell. 2001;107:537–548. - PubMed
 
- 
    - Branzei D., Foiani M. Maintaining genome stability at the replication fork. Nat. Rev. Mol. Cell Biol. 2010;11:208–219. - PubMed
 
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
- Full Text Sources
- Other Literature Sources
- Molecular Biology Databases
 
        