Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jul;7(7):653-63.
doi: 10.1016/j.jcmg.2014.01.014. Epub 2014 May 7.

CMR-guided approach to localize and ablate gaps in repeat AF ablation procedure

Affiliations
Free article

CMR-guided approach to localize and ablate gaps in repeat AF ablation procedure

Felipe Bisbal et al. JACC Cardiovasc Imaging. 2014 Jul.
Free article

Abstract

Objectives: The aim of this study was to test the feasibility and usefulness of a new delayed-enhancement cardiac magnetic resonance (DE-CMR)-guided approach to ablate gaps in redo procedures.

Background: Recurrences of atrial fibrillation (AF) after pulmonary vein isolation (PVI) may be related to gaps at the ablation lines. DE-CMR allows identification of radiofrequency lesions and gaps (CMR gaps).

Methods: Fifteen patients undergoing repeated AF ablations were included (prior procedure was PVI in all patients and roof-line ablation in 8 patients). Pre-procedure 3-dimensional (3D) DE-CMR was performed with a respiratory-navigated (free-breathing) and electrocardiographically gated inversion-recovery gradient-echo sequence (voxel size 1.25 × 1.25 × 2.5 mm). Endocardium and epicardium were manually segmented to create a 3D reconstruction (DE-CMR model). A pixel signal intensity map was projected on the DE-CMR model and color-coded (thresholds 40 ± 5% and 60 ± 5% of maximum intensity). The DE-CMR model was imported into the navigation system to guide the ablation of CMR gaps, with the operator blinded to electrical data. Fifteen conventional procedures were used as controls to compare procedural duration, radiofrequency, and fluoroscopy times.

Results: Fifteen patients (56 pulmonary veins [PVs]; 57 ± 8 years of age; 9 with paroxysmal AF) were analyzed. In total, 67 CMR gaps were identified around PVs (mean 4.47 gaps/patient; median length 13.33 mm/gap) and 9 at roof line. All of the electrically reconnected PVs (87.5%) had CMR gaps. The site of electrical PV reconnection (assessed by circular mapping catheter) matched with a CMR gap in 79% of PVs. CMR-guided ablation led to reisolation of 95.6% of reconnected PVs (median radiofrequency time of 13.3 [interquartile range: 7.5 to 21.7] min/patient) and conduction block through the roof line in all patients (1.4 [interquartile range: 0.7 to 3.1] min/patient). Compared with controls, the CMR-guided approach shortened radiofrequency time (1,441 ± 915 s vs. 930 ± 662 s; p = 0.026) but not the procedural duration or fluoroscopy time.

Conclusions: DE-CMR can successfully guide repeated PVI procedures by accurately identifying and localizing gaps and may reduce procedural duration and radiofrequency application time.

Keywords: atrial fibrillation; catheter ablation; delayed-enhancement; gaps; magnetic resonance imaging.

PubMed Disclaimer

Comment in

Publication types