Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Sep;26(9):1897-908.
doi: 10.1016/j.cellsig.2014.05.001. Epub 2014 May 9.

Regulation of contractile signaling and matrix remodeling by T-cadherin in vascular smooth muscle cells: constitutive and insulin-dependent effects

Affiliations

Regulation of contractile signaling and matrix remodeling by T-cadherin in vascular smooth muscle cells: constitutive and insulin-dependent effects

Agne Frismantiene et al. Cell Signal. 2014 Sep.

Abstract

Expression of GPI-anchored T-cadherin (T-cad) on vascular smooth muscle cells (VSMC) is elevated in vascular disorders such as atherosclerosis and restenosis which are associated with insulin resistance. Functions for T-cad and signal transduction pathway utilization by T-cad in VSMC are unknown. The present study examines the consequences of altered T-cad expression on VSMC for constitutive and insulin-induced Akt/mTOR axis signaling and contractile competence. Using viral vectors rat (WKY and SHR) and human aortic VSMCs were variously transduced with respect to T-cad-overexpression (Tcad+-VSMC) or T-cad-deficiency (shT-VSMC) and compared with their respective control transductants (E-VSMC or shC-VSMC). Tcad+-VSMC exhibited elevated constitutive levels of phosphorylated Akt(ser473), GSK3β(ser9), S6RP(ser235/236) and IRS-1(ser636/639). Total IRS-1 levels were reduced. Contractile machinery was constitutively altered in a manner indicative of reduced intrinsic contractile competence, namely decreased phosphorylation of MYPT1(thr696 or thr853) and MLC20(thr18/ser19), reduced RhoA activity and increased iNOS expression. Tcad+-VSMC-populated collagen lattices exhibited greater compaction which was due to increased collagen fibril packing/reorganization. T-cad+-VSMC exhibited a state of insulin insensitivity as evidenced by attenuation of the ability of insulin to stimulate Akt/mTOR axis signaling, phosphorylation of MLC20 and MYPT1, compaction of free-floating lattices and collagen fibril reorganization in unreleased lattices. The effects of T-cad-deficiency on constitutive characteristics and insulin responsiveness of VSMC were opposite to those of T-cad-overexpression. The study reveals novel cadherin-based modalities to modulate VSMC sensitivity to insulin through Akt/mTOR axis signaling as well as vascular function and tissue architecture through the effects on contractile competence and organization of extracellular matrix.

Keywords: Insulin resistance; Remodeling; Signal transduction; T-cadherin; Vascular smooth muscle cells.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources