Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun 1:118:234-42.
doi: 10.1016/j.colsurfb.2014.03.054. Epub 2014 Apr 13.

Resveratrol-loaded nanocarriers: formulation, optimization, characterization and in vitro toxicity on cochlear cells

Affiliations

Resveratrol-loaded nanocarriers: formulation, optimization, characterization and in vitro toxicity on cochlear cells

Umberto M Musazzi et al. Colloids Surf B Biointerfaces. .

Abstract

The present work aimed to investigate the suitability of polymeric nanoparticles (NPs) loaded with resveratrol (RES) for drug delivery to cochlear cells. RES-loaded NPs were prepared by a solvent-diffusion method without surfactant. The Box-Behnken design was used to study the effect of the formulation variables on the particle mean diameter (PMD), polydispersity index (PDI), zeta-potential (ζ), percent drug encapsulation efficiency (EE%), and ratio between NP size before and after freeze-drying (Sf/Si). The physicochemical stability of the RES-loaded NPs during freeze-drying was investigated using four well-known cryoprotectants (i.e., lactose, mannitol, sucrose, and trehalose) at different concentrations. The RES-loaded NPs were also characterized by powder X-ray diffraction (PXRD) and in vitro drug release studies. Finally, the in vitro toxicity of the synthesized NPs was evaluated on two cochlear cell lines: HEI-OC1 and SVK-1 cells. The optimal formulation (desirability: 0.86) had 135.5±37.3nm as PMD, 0.126±0.080 as PDI, -26.84±3.31mV as ζ, 99.83±17.59% as EE%, and 3.30±0.92 as Sf/Si ratio. The PMD and PDI of the RES-loaded NPs were maintained within the model space only when trehalose was used at concentrations higher than 15% (w/v). Results from the in vitro cytotoxicity studies showed that blank NPs did not alter the viability of both cells lines, except for concentrations higher than 600μg/mL. However, the cell viability was significantly decreased at high concentrations of native RES (>50μM, p<0.05) in both cell lines. Overall, the results suggested that the RES-loaded polymeric NPs could be a suitable template for cochlea antioxidant delivery and otoproctection.

Keywords: Box–Behnken design; Ototoxicity; Polymeric nanoparticles; Resveratrol; Trehalose.

PubMed Disclaimer

LinkOut - more resources