Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 May 9;9(5):e96389.
doi: 10.1371/journal.pone.0096389. eCollection 2014.

Population-level impact of shorter-course regimens for tuberculosis: a model-based analysis

Affiliations

Population-level impact of shorter-course regimens for tuberculosis: a model-based analysis

Mariam O Fofana et al. PLoS One. .

Abstract

Despite current control efforts, global tuberculosis (TB) incidence is decreasing slowly. New regimens that can shorten treatment hold promise for improving treatment completion and success, but their impact on population-level transmission remains unclear. Earlier models projected that a four-month regimen could reduce TB incidence by 10% but assumed that an entire course of therapy must be completed to derive any benefit. We constructed a dynamic transmission model of TB disease calibrated to global estimates of incidence, prevalence, mortality, and treatment success. To account for the efficacy of partial treatment, we used data from clinical trials of early short-course regimens to estimate relapse rates among TB patients who completed one-third, one-half, two-thirds, and all of their first-line treatment regimens. We projected population-level incidence and mortality over 10 years, comparing standard six-month therapy to hypothetical shorter-course regimens with equivalent treatment success but fewer defaults. The impact of hypothetical four-month regimens on TB incidence after 10 years was smaller than estimated in previous modeling analyses (1.9% [95% uncertainty range 0.6-3.1%] vs. 10%). Impact on TB mortality was larger (3.5% at 10 years) but still modest. Transmission impact was most sensitive to the proportion of patients completing therapy: four-month therapy led to greater incidence reductions in settings where 25% of patients leave care ("default") over six months. Our findings remained robust under one-way variation of model parameters. These findings suggest that novel regimens that shorten treatment duration may have only a modest effect on TB transmission except in settings of very low treatment completion.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have read the journal's policy and declare the following conflicts: GMK, GBG, RGW, and DWD are separately funded by the Global Alliance for TB Drug Development (TB Alliance) to perform a cost-effectiveness analysis of shorter-course TB regimens. This work was initiated prior to that relationship being formed, and the TB Alliance had no role in the analysis of this study nor in the decision to publish. MOF has no conflicts of interest to declare. DWD is a PLOS ONE Editorial Board member. This does not alter our adherence to PLOS ONE Editorial policies and criteria.

Figures

Figure 1
Figure 1. Model compartments and transition rates.
Boxes represent the proportions of the modeled population that are susceptible to infection, latently infected with M. tuberculosis, in active TB disease, under treatment, or cured. Arrows represent the transitions between various states, including up to four sequential phases of treatment. Rates of transition are described in the Methods section and Appendix S1.
Figure 2
Figure 2. Proportion cured after default, by treatment phase and regimen duration.
The proportion cured after default in a six-month treatment regimen was based on outcomes of early TB treatment clinical trials. For each hypothetical shortened treatment regimen, the proportion cured after default is increased according to the proportion of the total treatment duration completed. Detailed examples of calculations are provided in Appendix S1.
Figure 3
Figure 3. Reduction in TB incidence and mortality achievable from shorter-course regimens over time.
Assuming TB incidence of 125 per 100,000/year, and 7% overall treatment default, the implementation of a four-month regimen vs. a six-month regimen results in a 1.9% reduction in incidence at 10 years (vertical line marks year 10 after introduction of a new regimen). Hypothetical two-month and two-week regimens decrease incidence by 4.3% and 6.7% respectively.
Figure 4
Figure 4. Sensitivity analyses.
One-way and two-way sensitivity analyses of the difference in incidence at year 10 after introduction of a four-month regimen versus continuation of a six-month regimen of equal efficacy. A) One-way sensitivity analyses. Input parameters were varied one at a time within ranges consistent with estimates in the literature (Table 2). In this figure, we varied incidence by varying the transmission rate, but no major differences were observed when we instead varied the proportion of rapid progression to active disease. The parameters that most significantly influenced the impact of a four-month vs. six-month treatment regimen were the degree of protection afforded by latent infection, incidence of TB disease, and the proportion of treated patients who default at baseline. B) Two-way sensitivity analysis. The two most influential parameters likely to vary widely across epidemiological settings (TB disease incidence and proportion of treated patients defaulting at baseline) were varied simultaneously in a stepwise manner, within a range consistent with estimates in the literature and various epidemiologic settings (Table 2). Colors correspond to the range of projected incidence reduction for each combination of baseline incidence and treatment default and selected countries with representative estimates are shown. The highest estimates for both treatment default (25%) and baseline incidence (1,000 per 100,000/year) resulted in no more than 8.3% incidence reduction with a four-month vs. six-month regimen at 10 years.

Similar articles

Cited by

References

    1. World Health Organization (2012) Global tuberculosis control 2012. Geneva: WHO.
    1. Flexner C (2007) HIV drug development: The next 25 years. Nat Rev Drug Discov 6: 959–966. - PubMed
    1. Koul A, Arnoult E, Lounis N, Guillemont J, Andries K (2011) The challenge of new drug discovery for tuberculosis. Nature 469: 483–490. - PubMed
    1. Spigelman M, Gillespie S (2006) Tuberculosis drug development pipeline: Progress and hope. Lancet 367: 945–947. - PubMed
    1. Ma Z, Lienhardt C, McIlleron H, Nunn AJ, Wang X (2010) Global tuberculosis drug development pipeline: The need and the reality. Lancet 375: 2100–2109. - PubMed

Publication types

Substances