Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun 21;16(23):11763-9.
doi: 10.1039/c4cp01345j. Epub 2014 May 9.

Toward in silico modeling of palladium-hydrogen-carbon nanohorn nanocomposites

Affiliations

Toward in silico modeling of palladium-hydrogen-carbon nanohorn nanocomposites

Piotr Kowalczyk et al. Phys Chem Chem Phys. .

Abstract

We present the first in silico modeling of the Pd-H-single-walled carbon nanohorn nanocomposites. Temperature-quench Monte Carlo simulations are used to generate the most stable morphologies of Pd81 clusters (cluster sizes of ∼2 nm) deposited inside the morphologically defective single-walled carbon nanohorns (S. Furmaniak, A. P. Terzyk, K. Kaneko, P. A. Gauden, P. Kowalczyk, T. Itoh, Phys. Chem. Chem. Phys., 2013, 15, 1232-1240). The optimized Pd81-single-walled carbon nanohorn nanocomposites are next used in calculating the H binding energy distributions at 300 K. The most stable positions of H impurity in confined Pd81 clusters are identified, showing subsurface character of H absorption from the dilute H2 gas at 300 K. The H binding energy distribution on the Pd(100) open surface at 300 K is computed and compared with those corresponding to Pd81-single-walled carbon nanohorn nanocomposites. Finally, the impact of the Pd-H short-range order on the H binding energy is explored and critically discussed.

PubMed Disclaimer

LinkOut - more resources