Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 May-Jun;34(3):589-612.
doi: 10.1148/rg.343135041.

Oncologic applications of dual-energy CT in the abdomen

Affiliations
Review

Oncologic applications of dual-energy CT in the abdomen

Mukta D Agrawal et al. Radiographics. 2014 May-Jun.

Abstract

Dual-energy computed tomographic (DECT) technology offers enhanced capabilities that may benefit oncologic imaging in the abdomen. By using two different energies, dual-energy CT allows material decomposition on the basis of energy-dependent attenuation profiles of specific materials. Although image acquisition with dual-energy CT is similar to that with single-energy CT, comprehensive postprocessing is able to generate not only images that are similar to single-energy CT (SECT) images, but a variety of other images, such as virtual unenhanced (VUE), virtual monochromatic (VMC), and material-specific iodine images. An increase in the conspicuity of iodine on low-energy VMC images and material-specific iodine images may aid detection and characterization of tumors. Use of VMC images of a desired energy level (40-140 keV) improves lesion-to-background contrast and the quality of vascular imaging for preoperative planning. Material-specific iodine images enable differentiation of hypoattenuating tumors from hypo- or hyperattenuating cysts and facilitate detection of isoattenuating tumors, such as pancreatic masses and peritoneal disease, thereby defining tumor targets for imaging-guided therapy. Moreover, quantitative iodine mapping may serve as a surrogate biomarker for monitoring effects of the treatment. Dual-energy CT is an innovative imaging technique that enhances the capabilities of CT in evaluating oncology patients.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources