Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Sep 22;140(2):221-30.
doi: 10.1016/s0022-5193(89)80130-4.

Liquid junction potentials calculated from numerical solutions of the Nernst-Planck and Poisson equations

Affiliations

Liquid junction potentials calculated from numerical solutions of the Nernst-Planck and Poisson equations

O J Riveros et al. J Theor Biol. .

Abstract

We present numerical solutions for the one-dimensional Nernst-Planck and Poisson system of equations for steady-state electrodiffusion. Commonly used approximate solutions to these equations invoke assumptions of local electroneutrality (Planck approximation) or constant electric field (Goldman approximation). Calculations were performed to test the ranges over which these approximate theories are valid. For a dilutional junction of a 1:1 electrolyte, separated from adjoining perfectly stirred solutions by sharp boundaries, the Planck approximation is valid for values of kappa dL greater than 10, where 1/kappa d is the Debye length of the more dilute solution. The Goldman approximation is valid for kappa cL less than 0.1 where 1/kappa c is the Debye length of the more concentrated solution. These results suggest that the modeling of electrodiffusive flows in and near membrane ion channels may require numerical solutions of this set of equations rather than the use of either limiting case.

PubMed Disclaimer

Publication types

LinkOut - more resources