Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jul 21;43(27):10355-64.
doi: 10.1039/c4dt00425f. Epub 2014 May 14.

Layered rare earth hydroxides (LREHs): synthesis and structure characterization towards multifunctionality

Affiliations

Layered rare earth hydroxides (LREHs): synthesis and structure characterization towards multifunctionality

Jianbo Liang et al. Dalton Trans. .

Abstract

Layered rare earth hydroxides (LREHs) represent a new family of layered host compounds that integrate attractive physicochemical properties of rare earth elements with the wide tunability of guest anions. The compounds have attracted significant research attention, and potential applications have been found in various fields such as optics, catalysis, bio-medicine and so on. In this perspective, we describe our recent progress in the synthesis, structure characterization, and development of functionalities of the LREH compounds. A unique homogeneous alkalization method, in which RE ions are precipitated from a solution containing RE salt, concentrated target anions and hexamethylenetetramine, has been employed to effectively produce highly crystalline LREH samples. A range of anionic forms including chloride-, nitrate-, sulfate- and organodisulfonate-series, have been synthesized and structurally characterized. Two types of cationic rare earth hydroxide layers, {[RE2(OH)5(H2O)2](+)}∞ for the chloride- and nitrate-series and {[RE(OH)2(H2O)](+)}∞ for the sulfate- and organodisulfonate-series, are classified. Unique dehydration/rehydration behaviors or thermal phase evolution of the LREH compounds have been revealed and discussed in relation to the crystal structures. An outlook for potential applications of LREH compounds as anion exchangers, precursors to unique functional oxides, and optical phosphors is described.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources