Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Oct;63(10):3394-403.
doi: 10.2337/db13-1868. Epub 2014 May 13.

Involvement of cAMP/EPAC/TRPM2 activation in glucose- and incretin-induced insulin secretion

Affiliations

Involvement of cAMP/EPAC/TRPM2 activation in glucose- and incretin-induced insulin secretion

Masashi Yosida et al. Diabetes. 2014 Oct.

Abstract

In pancreatic β-cells, closure of the ATP-sensitive K(+) (K(ATP)) channel is an initial process triggering glucose-stimulated insulin secretion. In addition, constitutive opening of background nonselective cation channels (NSCCs) is essentially required to effectively evoke depolarization as a consequence of K(ATP) channel closure. Thus, it is hypothesized that further opening of NSCC facilitates membrane excitability. We identified a class of NSCC that was activated by exendin (ex)-4, GLP-1, and its analog liraglutide at picomolar levels. This NSCC was also activated by increasing the glucose concentration. NSCC activation by glucose and GLP-1 was a consequence of the activated cAMP/EPAC-mediated pathway and was attenuated in TRPM2-deficient mice. The NSCC was not activated by protein kinase A (PKA) activators and was activated by ex-4 in the presence of PKA inhibitors. These results suggest that glucose- and incretin-activated NSCC (TRPM2) works in concert with closure of the KATP channel to effectively induce membrane depolarization to initiate insulin secretion. The current study reveals a new mechanism for regulating electrical excitability in β-cells and for mediating the action of glucose and incretin to evoke insulin secretion, thereby providing an innovative target for the treatment of type 2 diabetes.

PubMed Disclaimer

Publication types

MeSH terms