Synthesis and biophysical properties of C5-functionalized LNA (locked nucleic acid)
- PMID: 24825249
- PMCID: PMC4049237
- DOI: 10.1021/jo500614a
Synthesis and biophysical properties of C5-functionalized LNA (locked nucleic acid)
Abstract
Oligonucleotides modified with conformationally restricted nucleotides such as locked nucleic acid (LNA) monomers are used extensively in molecular biology and medicinal chemistry to modulate gene expression at the RNA level. Major efforts have been devoted to the design of LNA derivatives that induce even higher binding affinity and specificity, greater enzymatic stability, and more desirable pharmacokinetic profiles. Most of this work has focused on modifications of LNA's oxymethylene bridge. Here, we describe an alternative approach for modulation of the properties of LNA: i.e., through functionalization of LNA nucleobases. Twelve structurally diverse C5-functionalized LNA uridine (U) phosphoramidites were synthesized and incorporated into oligodeoxyribonucleotides (ONs), which were then characterized with respect to thermal denaturation, enzymatic stability, and fluorescence properties. ONs modified with monomers that are conjugated to small alkynes display significantly improved target affinity, binding specificity, and protection against 3'-exonucleases relative to regular LNA. In contrast, ONs modified with monomers that are conjugated to bulky hydrophobic alkynes display lower target affinity yet much greater 3'-exonuclease resistance. ONs modified with C5-fluorophore-functionalized LNA-U monomers enable fluorescent discrimination of targets with single nucleotide polymorphisms (SNPs). In concert, these properties render C5-functionalized LNA as a promising class of building blocks for RNA-targeting applications and nucleic acid diagnostics.
Figures







Similar articles
-
Carbohydrate-functionalized locked nucleic acids: oligonucleotides with extraordinary binding affinity, target specificity, and enzymatic stability.Org Lett. 2014 Jun 20;16(12):3308-11. doi: 10.1021/ol501306u. Epub 2014 Jun 3. Org Lett. 2014. PMID: 24890872
-
C5-alkynyl-functionalized α-L-LNA: synthesis, thermal denaturation experiments and enzymatic stability.J Org Chem. 2014 Jun 6;79(11):5062-73. doi: 10.1021/jo5006153. Epub 2014 May 13. J Org Chem. 2014. PMID: 24797769 Free PMC article.
-
Preparation of C5-functionalized locked nucleic acids (LNAs).Curr Protoc Nucleic Acid Chem. 2011 Mar;Chapter 4:Unit 4.43. doi: 10.1002/0471142700.nc0443s44. Curr Protoc Nucleic Acid Chem. 2011. PMID: 21400703
-
Locked nucleic acid: high-affinity targeting of complementary RNA for RNomics.Handb Exp Pharmacol. 2006;173(173):405-22. doi: 10.1007/3-540-27262-3_21. Handb Exp Pharmacol. 2006. PMID: 16594628 Free PMC article. Review.
-
LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA.Biochemistry. 2004 Oct 26;43(42):13233-41. doi: 10.1021/bi0485732. Biochemistry. 2004. PMID: 15491130 Review.
Cited by
-
Double-headed nucleosides: Synthesis and applications.Beilstein J Org Chem. 2021 Jun 8;17:1392-1439. doi: 10.3762/bjoc.17.98. eCollection 2021. Beilstein J Org Chem. 2021. PMID: 34194579 Free PMC article. Review.
-
Strategic Design of Fluorescent Perylene-Modified Nucleic Acid Monomers: Position-, Phosphorylation-, and Linker-Dependent Control of Electron Transfer.J Chem Inf Model. 2025 Mar 24;65(6):2940-2949. doi: 10.1021/acs.jcim.4c02223. Epub 2025 Mar 3. J Chem Inf Model. 2025. PMID: 40028910
-
Recent Advances in Nucleic Acid Targeting Probes and Supramolecular Constructs Based on Pyrene-Modified Oligonucleotides.Molecules. 2017 Nov 30;22(12):2108. doi: 10.3390/molecules22122108. Molecules. 2017. PMID: 29189716 Free PMC article. Review.
-
A guide to large-scale RNA sample preparation.Anal Bioanal Chem. 2018 May;410(14):3239-3252. doi: 10.1007/s00216-018-0943-8. Epub 2018 Mar 15. Anal Bioanal Chem. 2018. PMID: 29546546 Free PMC article. Review.
-
Mechanism of the extremely high duplex-forming ability of oligonucleotides modified with N-tert-butylguanidine- or N-tert-butyl-N'- methylguanidine-bridged nucleic acids.Nucleic Acids Res. 2023 Aug 25;51(15):7749-7761. doi: 10.1093/nar/gkad608. Nucleic Acids Res. 2023. PMID: 37462081 Free PMC article.
References
-
-
For recent reviews on conformationally restricted nucleotides, see e.g.:
- Herdewijn P. Chem. Biodiv. 2010, 7, 1–59. - PubMed
- Obika S.; Abdur Rahman S. M.; Fujisaka A.; Kawada Y.; Baba T.; Imanishi T. Heterocycles 2010, 81, 1347–1392.
- Prakash T. P. Chem. Biodiv. 2011, 8, 1616–1641. - PubMed
- Zhou C.; Chattopadhyaya J. Chem. Rev. 2012, 112, 3808–3832. - PubMed
-
-
-
For recent representative examples, see:
- Seth P. P.; Vasquez G.; Allerson C. A.; Berdeja A.; Gaus H.; Kinberger G. A.; Prakash T. P.; Migawa M. T.; Bhat B.; Swayze E. E. J. Org. Chem. 2010, 75, 1569–1581. - PubMed
- Li Q.; Yuan F.; Zhou C.; Plashkevych O.; Chattopadhyaya J. J. Org. Chem. 2010, 75, 6122–6140. - PubMed
- Liu Y.; Xu J.; Karimiahmadabadi M.; Zhou C.; Chattopadhyaya J. J. Org. Chem. 2010, 75, 7112–7128. - PubMed
- Upadhayaya R.; Deshpande S. A.; Li Q.; Kardile R. A.; Sayyed A. Y.; Kshirsagar E. K.; Salunke R. V.; Dixit S. S.; Zhou C.; Foldesi A.; Chattopadhyaya J. J. Org. Chem. 2011, 76, 4408–4431. - PubMed
- Shrestha A. R.; Hari Y.; Yahara A.; Osawa T.; Obika S. J. Org. Chem. 2011, 76, 9891–9899. - PubMed
- Hanessian S.; Schroeder B. R.; Giacometti R. D.; Merner B. L.; Østergaard M. E.; Swayze E. E.; Seth P. P. Angew. Chem., Int. Ed. 2012, 51, 11242–11245. - PubMed
- Madsen A. S.; Wengel J. J. Org. Chem. 2012, 77, 3878–3886. - PubMed
- Haziri A. I.; Leumann C. J. J. Org. Chem. 2012, 77, 5861–5869. - PubMed
- Gerber A.-B.; Leumann C. J. Chem. Eur. J. 2013, 19, 6990–7006. - PubMed
- Morihiro K.; Kodama T.; Kentefu; Moai Y.; Veedu R. N.; Obika S. Angew. Chem., Int. Ed. 2013, 52, 5074–5078. - PubMed
- Hari Y.; Osawa T.; Kotobuki Y.; Yahara A.; Shrestha A. R.; Obika S. Bioorg. Med. Chem. 2013, 21, 4405–4412. - PubMed
- Hari Y.; Morikawa T.; Osawa T.; Obika S. Org. Lett. 2013, 15, 3702–3705. - PubMed
- Migawa M. T.; Prakash T. P.; Vasquez G.; Seth P. P.; Swayze E. E. Org. Lett. 2013, 15, 4316–4319. - PubMed
- Hanessian S.; Schroeder B. R.; Merner B. L.; Chen B.; Swayze E. E.; Seth P. P. J. Org. Chem. 2013, 78, 9051–9063. - PubMed
- Hanessian S.; Wagger J.; Merner B. L.; Giacometti R. D.; Østergaard M. E.; Swayze E. E.; Seth P. P. J. Org. Chem. 2013, 78, 9064–9075. - PubMed
-
-
- Eschenmoser A. Science 1999, 284, 2118–2124. - PubMed
-
- Hendrix C.; Rosemeyer H.; Verheggen I.; Van Aerschot A.; Seela F.; Herdewijn P. Chem. Eur. J. 1997, 3, 110–120.
-
- Wang J.; Verbeure B.; Luyten I.; Lescrinier E.; Froeyen M.; Hendrix C.; Rosemeyer H.; Seela F.; Van Aerschot A.; Herdewijn P. J. Am. Chem. Soc. 2000, 122, 8595–8602.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous