Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun 11;6(11):8288-94.
doi: 10.1021/am5011095. Epub 2014 May 29.

Sticky "delivering-from" strategies using viral vectors for efficient human neural stem cell infection by bioinspired catecholamines

Affiliations

Sticky "delivering-from" strategies using viral vectors for efficient human neural stem cell infection by bioinspired catecholamines

Eunmi Kim et al. ACS Appl Mater Interfaces. .

Abstract

Controlled release of biosuprastructures, such as viruses, from surfaces has been a challenging task in providing efficient ex vivo gene delivery. Conventional controlled viral release approaches have demonstrated low viral immobilization and burst release, inhibiting delivery efficiency. Here, a highly powerful substrate-mediated viral delivery system was designed by combining two key components that have demonstrated great potential in the fields of gene therapy and surface chemistry, respectively: adeno-associated viral (AAV) vectors and adhesive catecholamine surfaces. The introduction of a nanoscale thin coating of catecholamines, poly(norepinephrine) (pNE) or poly(dopamine) (pDA) to provide AAV adhesion followed by human neural stem cell (hNSC) culture on sticky solid surfaces exhibited unprecedented results: approximately 90% loading vs 25% (AAV_bare surface), no burst release, sustained release at constant rates, approximately 70% infection vs 20% (AAV_bare surface), and rapid internalization. Importantly, the sticky catecholamine-mediated AAV delivery system successfully induced a physiological response from hNSCs, cellular proliferation by a single-shot of AAV encoding fibroblast growth factor-2 (FGF-2), which is typically achieved by multiple treatments with expensive FGF-2 proteins. By combining the adhesive material-independent surface functionalization characters of pNE and pDA, this new sticky "delivering-from" gene delivery platform will make a significant contribution to numerous fields, including tissue engineering, gene therapy, and stem cell therapy.

PubMed Disclaimer

Publication types

LinkOut - more resources