Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jul;9(7):1602-14.
doi: 10.1002/cmdc.201300546. Epub 2014 May 14.

3-Aminoazetidin-2-one derivatives as N-acylethanolamine acid amidase (NAAA) inhibitors suitable for systemic administration

Affiliations

3-Aminoazetidin-2-one derivatives as N-acylethanolamine acid amidase (NAAA) inhibitors suitable for systemic administration

Annalisa Fiasella et al. ChemMedChem. 2014 Jul.

Abstract

N-Acylethanolamine acid amidase (NAAA) is a cysteine hydrolase that catalyzes the hydrolysis of endogenous lipid mediators such as palmitoylethanolamide (PEA). PEA has been shown to exert anti-inflammatory and antinociceptive effects in animals by engaging peroxisome proliferator-activated receptor α (PPAR-α). Thus, preventing PEA degradation by inhibiting NAAA may provide a novel approach for the treatment of pain and inflammatory states. Recently, 3-aminooxetan-2-one compounds were identified as a class of highly potent NAAA inhibitors. The utility of these compounds is limited, however, by their low chemical and plasma stabilities. In the present study, we synthesized and tested a series of N-(2-oxoazetidin-3-yl)amides as a novel class of NAAA inhibitors with good potency and improved physicochemical properties, suitable for systemic administration. Moreover, we elucidated the main structural features of 3-aminoazetidin-2-one derivatives that are critical for NAAA inhibition.

Keywords: N-acylethanolamine acid amidase; cysteine hydrolase; inhibitors; structure-activity relationships; β-lactams.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Structures of (S)–OOPP (1) and ARN077 (2)
Figure 2
Figure 2
Summary of key structural features for β-lactam based inhibitors of NAAA.
Scheme 1
Scheme 1
Synthetic pathway for the preparation of amide derivatives 11a–q and 12h. Reagents and conditions: a) p–anisidine, EDC, THF/DCM (3:1), r.t., 16 h [85–92%]; b) ImSO2Im, 0 °C, 1 h, then NaH, DMF, −20 °C, 1 h [75%]; c) CAN, MeCN/H2O (1:1), 0 °C, 1 h [80–85%]; d) 1,4–cyclohexadiene, 10% Pd on charcoal, EtOH, r.t., 12 h, then AcOH, EtOAc [79%]; Method A [for 11a, 11fh, 11l, 11o and 12h]: RCOCl, Et3N, DCM or DCM/DMF (3:1), r.t., 16 h [15–65%]; Method B [for 11be, 11ik, 11m–n and 11p–q]: RCOOH, TBTU, Et3N, DCM/DMF (3:1), r.t., 16 h [30–62%].
Scheme 2
Scheme 2
Syntheses of carboxylic acids 13, 14 and 15. Reagents and conditions: a) LiOH, THF/MeOH/H2O (1:1:1), r.t., 1 h [quant.]; b) Dess–Martin Periodinane, DCM, 0 °C, 1 h, then r.t, 1 h. [94%]; c) NaClO2, NaH2PO4, 2–methyl–2–butene, tBuOH/H2O 4:1, r.t. 1.5 h [quant.]; d) DMSO, oxalyl chloride, DCM, −78°C, 15 min then 17, −78 °C, 1 h, then Et3N, r.t. [quant.]; e) (EtO)3POCH2CO2Et, NaH (95%), THF, 0 °C to r.t. [77%]; f) H2, 10% Pd/C cartridge (H–Cube®, EtOH, 45 °C, 20 bar, flow: 1.0 mL/min), 92%; g) LiOH, THF/MeOH/H2O (1:1:1), r.t., 1 h [quant.].
Scheme 3
Scheme 3
Syntheses of compounds 21h-24h. Reagents and conditions: a) 1N NaOH, 35%, H2O2, 60% tBuOH–H2O, r.t., 16 h [82%]; b) 2N HCl.Et2O, 1,2–bis(trimethylsiloxy)cyclobutene, THF, reflux, 3 h [37%]; c) nonanoyl chloride, Et3N, DCM, r.t., 2 h [94%]; d) TFA/DCM (1:3), 0 °C, 30 min, then r.t. 45 min [quant.]; e) 2N HCl, r.t., 30 min then THF, r.t., 16 h [79%]; Method A: nonanoyl chloride, Et3N, DCM, r.t., 16 h [83%].
Scheme 4
Scheme 4
Syntheses of N–methylated compounds 27h-28h. Reagents and conditions: a) NaH (60% in mineral oil), MeI, THF, 0° C, 1 h then r.t., 4 h [25%]; b) NaH (95%), MeI, THF, 0° C, 1 h then r.t., 1 h [90%]; c) CAN, MeCN/H2O (1:1), 0 °C, 1 h [92%]; d) H2, 10% Pd/C cartridge (H–Cube, EtOAc, 30 °C, 1.0 bar, flow: 1.0 mL/min) then AcOH, EtOAc [78%]; Method A: nonanoyl chloride, Et3N, DCM, r.t., 16 h [33%].
Scheme 5
Scheme 5
Syntheses of amine, urea and carbamate derivatives 3234. Reagents and conditions: a) DMSO, oxalyl chloride, DCM, −78 °C, 15 min then n–nonanol −78 °C, 1 h, then Et3N, r.t. [quant.]; b) 9, Et3N, dichloroethane, 10 min, then Na(OAc)3BH, r.t., 1.5 h [21%]; c) nonyl isocyanate, DMAP, pyridine, r.t., 16 h [59%]; d) DMAP, 2-DPC, DCM, r.t., 16 h [quant.]; e) 9, DIPEA, DCM, r.t., 16 h [36%].

Similar articles

Cited by

References

    1. Calignano A, La Rana G, Giuffrida A, Piomelli D. Nature. 1998;394:277–281. - PubMed
    2. LoVerme J, La Rana G, Russo R, Calignano A, Piomelli D. Life Sci. 2005;77:1685–1698. - PubMed
    1. Piomelli D, Giuffrida A, Calignano A, de Fonseca FR. Trends Pharmacol Sci. 2000;21:218–224. - PubMed
    1. Berdyshev E, Boichot E, Corbel M, Germain N, Lagente V. Life Sci. 1998;63:Pl125–Pl129. - PubMed
    2. D’Agostino G, La Rana G, Russo R, Sasso O, Iacono A, Esposito E, Raso GM, Cuzzocrea S, Lo Verme J, Piomelli D, Meli R, Calignano A. J Pharmacol Exp Ther. 2007;322:1137–1143. - PubMed
    1. Mazzari S, Canella R, Petrelli L, Marcolongo G, Leon A. Eur J Pharmacol. 1996;300:227–236. - PubMed
    2. Calignano A, La Rana G, Piomelli D. Eur J Pharmacol. 2001;419:191–198. - PubMed
    3. Darmani NA, Izzo AA, Degenhardt B, Valenti M, Scaglione G, Capasso R, Sorrentini I, Di Marzo V. Neuropharmacology. 2005;48:1154–1163. - PubMed
    1. Lo Verme J, Fu J, Astarita G, La Rana G, Russo R, Calignano A, Piomelli D. Mol Pharmacol. 2005;67:15–19. - PubMed
    2. LoVerme J, Russo R, La Rana G, Fu J, Farthing J, Mattace-Raso G, Meli R, Hohmann A, Calignano A, Piomelli D. J Pharmacol Exp Ther. 2006;319:1051–1061. - PubMed
    3. Khasabova IA, Xiong Y, Coicou LG, Piomelli D, Seybold V. J Neurosci. 2012;32:12735–12743. - PMC - PubMed

Publication types