Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2014 Jul;11(6):945-50.
doi: 10.1513/AnnalsATS.201403-099OC.

Respiratory determinants of diurnal hypercapnia in obesity hypoventilation syndrome. What does weight have to do with it?

Affiliations
Comparative Study

Respiratory determinants of diurnal hypercapnia in obesity hypoventilation syndrome. What does weight have to do with it?

Shahrokh Javaheri et al. Ann Am Thorac Soc. 2014 Jul.

Abstract

Rationale: Among morbidly obese individuals, obstructive sleep apnea (OSA) is highly prevalent, with up to 20% suffering from hypoventilation syndrome. An increased diurnal PaCO2, the signature of obesity hypoventilation syndrome (OHS), implies diminished global ventilation, hence the term hypoventilation.

Objectives: We hypothesized that hypercapnic patients with OSA have lower Ve than eucapnic patients with OSA.

Methods: In this prospective study we recorded respiratory variables to determine the pathophysiological mechanisms of steady-state diurnal hypercapnia of 12 consecutive hypercapnic and 20 consecutive eucapnic patients with OSA, matched for apnea-hypopnea index. Patients with any known causes of hypercapnia were not included.

Measurements and main results: Comparing hypercapnic to eucapnic patients, the mean value (±SD) for PaCO2 (52 ± 5 vs. 40 ± 3 mm Hg) was significantly higher, and the mean PaO2 (59 ± 8 vs. 75 ± 10 mm Hg) was significantly lower, in the hypercapnic patients. Surprisingly, the mean values for [Formula: see text]e (12.2 ± 3.0 vs. 11.6 ± 2.0 L/min), alveolar ventilation, breathing rate, [Formula: see text]t, and dead space did not differ significantly. However, hypercapnic patients had a significantly greater CO2 production (336 ± 79 vs. 278 ± 58 ml/min), which was the main reason for hypercapnia. When adjusted for body surface area, the mean values for CO2 production were similar between the two groups.

Conclusions: These data emphasize the importance of weight loss, which could potentially reverse hypercapnic OSA to eucapnic OSA, hypothetically even in the absence of improvement in apnea-hypopnea index. In addition, reversal of hypercapnia should also improve oxygenation, both during sleep and while awake, minimizing hypoxia-induced organ dysfunction of OHS.

Keywords: CO2 retention; hypoxia; metabolic rate; morbid obesity; weight loss.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources