Rational design of a non-canonical "sticky-ended" collagen triple helix
- PMID: 24828884
- DOI: 10.1021/ja5001246
Rational design of a non-canonical "sticky-ended" collagen triple helix
Abstract
In a canonical collagen triple helix, three peptides self-assemble into a supercoiled motif with a one-amino-acid offset between the peptide chains. Design of triple helices that contain more than one residue offset is lucrative, as it leaves the non-covalent interactions unsatisfied at the termini and renders the termini "sticky" to further self-assemble into collagen-like nanofibers. Here we use lysine-glutamate axial salt-bridges to design a heterotrimeric collagen triple helix, ABC-1, containing a non-canonical offset of four residues between the peptide chains. The four-residue offset is necessary to prevent aggregation, which would prevent characterization of the non-canonical chain arrangement at the molecular level by NMR spectroscopy. A second heterotrimer, ABC-2, also stabilized by axial salt-bridges, is designed containing a canonical one-amino-acid offset to facilitate comparison of structure and stability by CD and NMR. ABC-1 and ABC-2 demonstrate our ability to modulate chain offset in a collagen triple helix. This lays the groundwork to design longer, and therefore stickier, offsets allowing access to a new class of collagen-related nanostructures.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources