Design principles of stripe-forming motifs: the role of positive feedback
- PMID: 24830352
- PMCID: PMC4023129
- DOI: 10.1038/srep05003
Design principles of stripe-forming motifs: the role of positive feedback
Abstract
Interpreting a morphogen gradient into a single stripe of gene-expression is a fundamental unit of patterning in early embryogenesis. From both experimental data and computational studies the feed-forward motifs stand out as minimal networks capable of this patterning function. Positive feedback within gene networks has been hypothesised to enhance the sharpness and precision of gene-expression borders, however a systematic analysis has not yet been reported. Here we set out to assess this hypothesis, and find an unexpected result. The addition of positive-feedback can have different effects on two different designs of feed-forward motif- it increases the parametric robustness of one design, while being neutral or detrimental to the other. These results shed light on the abundance of the former motif and especially of mutual-inhibition positive feedback in developmental networks.
Figures





Similar articles
-
Emergent Bistable Switches from the Incoherent Feed-Forward Signaling of a Positive Feedback Loop.ACS Synth Biol. 2021 Nov 19;10(11):3117-3128. doi: 10.1021/acssynbio.1c00373. Epub 2021 Oct 25. ACS Synth Biol. 2021. PMID: 34694110
-
The Hes gene family: repressors and oscillators that orchestrate embryogenesis.Development. 2007 Apr;134(7):1243-51. doi: 10.1242/dev.000786. Epub 2007 Feb 28. Development. 2007. PMID: 17329370 Review.
-
Evolvability of feed-forward loop architecture biases its abundance in transcription networks.BMC Syst Biol. 2012 Jan 19;6:7. doi: 10.1186/1752-0509-6-7. BMC Syst Biol. 2012. PMID: 22260237 Free PMC article.
-
Multiple feedback loops achieve robust localization of wingless expression in Drosophila notum development.J Theor Biol. 2012 Jan 7;292:18-29. doi: 10.1016/j.jtbi.2011.09.022. Epub 2011 Sep 24. J Theor Biol. 2012. PMID: 21964462
-
Creating gradients by morphogen shuttling.Trends Genet. 2013 Jun;29(6):339-47. doi: 10.1016/j.tig.2013.01.001. Epub 2013 Jan 29. Trends Genet. 2013. PMID: 23369355 Review.
Cited by
-
Cooperative stability renders protein complex formation more robust and controllable.Sci Rep. 2022 Jun 21;12(1):10490. doi: 10.1038/s41598-022-14362-z. Sci Rep. 2022. PMID: 35729235 Free PMC article.
-
Recurrent hyper-motif circuits in developmental programs.bioRxiv [Preprint]. 2024 Nov 20:2024.11.20.624466. doi: 10.1101/2024.11.20.624466. bioRxiv. 2024. PMID: 39605580 Free PMC article. Preprint.
-
Dynamics of gene circuits shapes evolvability.Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2103-8. doi: 10.1073/pnas.1411065112. Epub 2015 Feb 2. Proc Natl Acad Sci U S A. 2015. PMID: 25646408 Free PMC article.
-
Synthetic circuits reveal how mechanisms of gene regulatory networks constrain evolution.Mol Syst Biol. 2018 Sep 10;14(9):e8102. doi: 10.15252/msb.20178102. Mol Syst Biol. 2018. PMID: 30201776 Free PMC article.
-
Fixed Point Attractor Theory Bridges Structure and Function in C. elegans Neuronal Network.Front Neurosci. 2022 Apr 25;16:808824. doi: 10.3389/fnins.2022.808824. eCollection 2022. Front Neurosci. 2022. PMID: 35546893 Free PMC article.
References
-
- Hartwell L. H., Hopfield J. J., Leibler S. & Murray A. W. From molecular to modular cell biology. Nature 402, 47–52 (1999). - PubMed
-
- Wagner G. P., Pavlicev M. & Cheverud J. M. The road to modularity. Nat Rev Genet 8, 921–931 (2007). - PubMed
-
- Milo R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002). - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources