The discovery of potentially selective human neuronal nitric oxide synthase (nNOS) Inhibitors: a combination of pharmacophore modelling, CoMFA, virtual screening and molecular docking studies
- PMID: 24830557
- PMCID: PMC4057748
- DOI: 10.3390/ijms15058553
The discovery of potentially selective human neuronal nitric oxide synthase (nNOS) Inhibitors: a combination of pharmacophore modelling, CoMFA, virtual screening and molecular docking studies
Abstract
Neuronal nitric oxide synthase (nNOS) plays an important role in neurotransmission and smooth muscle relaxation. Selective inhibition of nNOS over its other isozymes is highly desirable for the treatment of neurodegenerative diseases to avoid undesirable effects. In this study, we present a workflow for the identification and prioritization of compounds as potentially selective human nNOS inhibitors. Three-dimensional pharmacophore models were constructed based on a set of known nNOS inhibitors. The pharmacophore models were evaluated by Pareto surface and CoMFA (Comparative Molecular Field Analysis) analyses. The best pharmacophore model, which included 7 pharmacophore features, was used as a search query in the SPECS database (SPECS®, Delft, The Netherlands). The hit compounds were further filtered by scoring and docking. Ten hits were identified as potential selective nNOS inhibitors.
Figures






References
-
- Stuehr D.J. Structure-function aspects in the nitric oxide synthases. Annu. Rev. Pharmacol. Toxicol. 1997;37:339–359. - PubMed
-
- Gabriela M., Subhash C.A., Jailall R., Shawn P.M., Suman R., John S.A., Dongqin Z., Frank P. First-in-class, dual-action, 3,5-disubstituted indole derivatives having human nitric oxide synthase (nNOS) and norepinephrine reuptake inhibitory (NERI) activity for the treatment of neuropathic pain. J. Med. Chem. 2012;55:3488–3501. - PubMed
-
- Hao J.X., Xu X.J. Treatment of a chronic allodynia-like response in spinally injured rats: Effects of systemically administered nitric oxide synthase inhibitors. Pain. 1996;66:313–319. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources