Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Aug;1(6):477-84.
doi: 10.1016/0896-6273(88)90178-x.

Agonists that suppress M-current elicit phosphoinositide turnover and Ca2+ transients, but these events do not explain M-current suppression

Affiliations

Agonists that suppress M-current elicit phosphoinositide turnover and Ca2+ transients, but these events do not explain M-current suppression

P J Pfaffinger et al. Neuron. 1988 Aug.

Abstract

The hypothesis that acetylcholine, substance P, and LHRH suppress M-current by activating phospholipase C was tested. Each agonist caused turnover of phosphoinositide, as measured by release of inositol phosphates, and a modest transient rise in intracellular free Ca2+ ([ Ca2+]i), as determined with fura-2. Active phorbol esters depressed M-current only 50% and did not prevent further suppression by LHRH. M-current, its control by agonists, and its depression by phorbol esters were not affected by adding inositol trisphosphate or Ca2+ buffers with high or low Ca2+ to the whole-cell, voltage-clamp pipette. We conclude that phospholipase C activation does occur but does not mediate the suppression of M-current by agonists. Caffeine produced large [Ca2+]i transients and acted as an agonist to suppress M-current.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources