Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2014 May 15;10(5):e1004078.
doi: 10.1371/journal.ppat.1004078. eCollection 2014 May.

HIV-infected individuals with low CD4/CD8 ratio despite effective antiretroviral therapy exhibit altered T cell subsets, heightened CD8+ T cell activation, and increased risk of non-AIDS morbidity and mortality

Affiliations
Randomized Controlled Trial

HIV-infected individuals with low CD4/CD8 ratio despite effective antiretroviral therapy exhibit altered T cell subsets, heightened CD8+ T cell activation, and increased risk of non-AIDS morbidity and mortality

Sergio Serrano-Villar et al. PLoS Pathog. .

Abstract

A low CD4/CD8 ratio in elderly HIV-uninfected adults is associated with increased morbidity and mortality. A subset of HIV-infected adults receiving effective antiretroviral therapy (ART) fails to normalize this ratio, even after they achieve normal CD4+ T cell counts. The immunologic and clinical characteristics of this clinical phenotype remain undefined. Using data from four distinct clinical cohorts and three clinical trials, we show that a low CD4/CD8 ratio in HIV-infected adults during otherwise effective ART (after CD4 count recovery above 500 cells/mm3) is associated with a number of immunological abnormalities, including a skewed T cell phenotype from naïve toward terminally differentiated CD8+ T cells, higher levels of CD8+ T cell activation (HLADR+CD38+) and senescence (CD28- and CD57+CD28-), and higher kynurenine/tryptophan ratio. Changes in the peripheral CD4/CD8 ratio are also reflective of changes in gut mucosa, but not in lymph nodes. In a longitudinal study, individuals who initiated ART within six months of infection had greater CD4/CD8 ratio increase compared to later initiators (>2 years). After controlling for age, gender, ART duration, nadir and CD4 count, the CD4/CD8 ratio predicted increased risk of morbidity and mortality. Hence, a persistently low CD4/CD8 ratio during otherwise effective ART is associated with increased innate and adaptive immune activation, an immunosenescent phenotype, and higher risk of morbidity/mortality. This ratio may prove useful in monitoring response to ART and could identify a unique subset of individuals needed of novel therapeutic interventions.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Percentages and absolute counts of CD8+ T cell maturation subsets among HIV-/CMV+ individuals and ART-suppressed HIV-infected patients with CD4 counts >500 cells/mm3 stratified by a normal (4th quartile, ≥1) or low (1st quartile, ≤0.4) CD4/CD8 ratio.
HIV-infected individuals with low CD4/CD8 ratio had lower percentages of TN, TCM, and TTR CD8+ cells, higher TEM and TEMRA (A), and higher absolute counts (B) of all subsets compared to those with higher CD4/CD8 ratio and with healthy controls.
Figure 2
Figure 2. Percentages and absolute counts of CD8+ activation phenotypes among HIV-/CMV+ individuals and ART-suppressed HIV-infected patients with CD4 counts >500 cells/mm3 stratified by a normal (4th quartile, ≥1, in green) or low (1st quartile, ≤0.4, in red) CD4/CD8 ratio.
Subjects with low CD4/CD8 ratio showed higher percentages (A) and absolute counts (B) of HLADR+, CD28− and CD28−CD57+, and higher absolute counts of PD1+ cells (B). There were no differences in HIV-infected individuals in the proportion of CD28−CD8+ T cells expressing CD57, being significantly lower in both groups compared to HIV-/CMV+ controls.
Figure 3
Figure 3. Association between the CD4/CD8 ratio and the % of CD28−CD8+ T cells with indoleamine 2,3-dioxygenase-1 (IDO-1) activity (kinurenine/tryptophan ratio) among participants in the SOCA cohort with 500 CD4+ T cells/mm3.
The KT ratio significantly correlated with the CD4/CD8 ratio and the % of CD28+CD8+ T cells. The between the CD4/CD8 ratio and the KT ratio was confirmed in a linear regression analysis adjusted by age, gender and cumulative ART exposure (Beta = −0.72, P = 0.009). The red line represents a linear prediction.
Figure 4
Figure 4. Association between the CD4/CD8 ratio in blood and in lymph nodes or in GALT.
While no association with the CD4/CD8 ratio in lymph nodes was detected (A), it correlated positively with the ratio in GALT (B). The red line represents a linear prediction.
Figure 5
Figure 5. Impact of early or later ART initiation in peripheral CD4+ T cell counts, CD8+ T cell counts and CD4/CD8 ratio in the OPTIONS cohort.
The CD4/CD8 ratio was compared between HIV-uninfected individuals (blue) and HIV-infected individuals initiating ART “early,” ≤6 months of infection (green), or “later,” ≥2 years after initial infection (red), at acute HIV diagnosis and after 1 year of ART. Median CD4/CD8 ratio was significantly higher after one year in early ART initiators compared to later initiators. (A). Early ART initiators experienced higher CD4+ T cell increase (B) than later initiators (C) after one year of ART (221 cells/mm3 vs. 130, respectively, P<0.001). No differences were observed in CD8+ T cell counts between early (D) and later ART initiators (E) after one year of ART (−212 cells/mm3 vs. −114, respectively, P = 0.098) but CD8+ T cells were significantly different between groups beyond one year of ART (−309 cells/mm3 vs. −114, respectively, P = 0.014). Changes in the CD4/CD8 ratio among recently HIV-infected individuals initiating ART early (F) and later (G) were also assessed over time. Early ART initiators experienced a higher increase at one year of ART than later initiators (+0.43 vs. +0.25, P<0.001). Individual participant trajectories shown with red lines, estimated mean values over time from linear mixed models adjusted by age, sex, baseline CD4+ T cells shown in thick black lines.

References

    1. Lohse N, Hansen AB, Pedersen G, Kronborg G, Gerstoft J, et al. (2007) Survival of persons with and without HIV infection in Denmark, 1995–2005. Ann Intern Med 146: 87–95. - PubMed
    1. Bhaskaran K, Hamouda O, Sannes M, Boufassa F, Johnson AM, et al. (2008) Changes in the risk of death after HIV seroconversion compared with mortality in the general population. JAMA 300: 51–59 Available: http://www.ncbi.nlm.nih.gov/pubmed/18594040. Accessed 22 October 2013. - PubMed
    1. Zwahlen M, Harris R, May M, Hogg R, Costagliola D, et al. (2009) Mortality of HIV-infected patients starting potent antiretroviral therapy: comparison with the general population in nine industrialized countries. Int J Epidemiol 38: 1624–1633 Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3119390&tool=p.... Accessed 27 August 2013. - PMC - PubMed
    1. Guaraldi G, Orlando G, Zona S, Menozzi M, Carli F, et al. (2011) Premature age-related comorbidities among HIV-infected persons compared with the general population. Clin Infect Dis 53: 1120–1126 Available: http://www.ncbi.nlm.nih.gov/pubmed/21998278. Accessed 20 April 2013. - PubMed
    1. Deeks SG, Tracy R, Douek DC (2013) Systemic Effects of Inflammation on Health during Chronic HIV Infection. Immunity 39: 633–645 Available: http://linkinghub.elsevier.com/retrieve/pii/S1074761313004354. Accessed 18 October 2013. - PMC - PubMed

Publication types

MeSH terms

Substances