Reproducing on time when temperature varies: shifts in the timing of courtship by fiddler crabs
- PMID: 24832079
- PMCID: PMC4022618
- DOI: 10.1371/journal.pone.0097593
Reproducing on time when temperature varies: shifts in the timing of courtship by fiddler crabs
Abstract
Many species reproduce when conditions are most favorable for the survival of young. Numerous intertidal fish and invertebrates release eggs or larvae during semilunar, large amplitude, nocturnal tides when these early life stages are best able to escape predation by fish that feed near the shore during the day. Remarkably, some species, including the fiddler crabs Uca terpsichores and Uca deichmanni, maintain this timing throughout the year as temperature, and thus the rate of embryonic development, vary. The mechanisms that allow such precision in the timing of the production of young are poorly known. A preliminary study suggested that when temperature decreases, U. terpsichores mate earlier in the tidal amplitude cycle such that larvae are released at the appropriate time. We tested this idea by studying the timing of courtship in U. terpsichores and U. deichmanni as temperature varied annually during two years, at 5 locations that differed in the temperature of the sediment where females incubate their eggs. Uca terpsichores courted earlier at locations where sediment temperature declined seasonally but not where sediment temperature remained elevated throughout the year. In contrast, clear shifts in courtship timing were not observed for U. deichmanni despite variation in sediment temperature. We discuss other mechanisms by which this species may maintain reproductive timing. These two species are likely to be affected differently by changes in the frequency and intensity of cold periods that are expected to accompany climate change.
Conflict of interest statement
Figures
References
-
- Harley CDG, Randall Hughes A, Hultgren KM, Miner BG, Sorte CJB, et al. (2006) The impacts of climate change in coastal marine systems. Ecology Letters 9: 228–241. - PubMed
-
- Kordas RL, Harley CDG, O'Connor MI (2011) Community ecology in a warming world: The influence of temperature on interspecific interactions in marine systems. Journal of Experimental Marine Biology and Ecology 400: 218–226.
-
- Parmesan C (2006) Ecological and Evolutionary Responses to Recent Climate Change. Annual Review of Ecology, Evolution, and Systematics 37: 637–669.
-
- Walther GR, Post E, Convey P, Menzel A, Parmesan C, et al. (2002) Ecological responses to recent climate change. Nature 416: 389–395. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
