Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun 4;136(22):7837-40.
doi: 10.1021/ja502824c. Epub 2014 May 23.

o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells

Affiliations

o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells

Nam Joong Jeon et al. J Am Chem Soc. .

Abstract

Three spiro-OMeTAD derivatives have been synthesized and characterized by (1)H/(13)C NMR spectroscopy and mass spectrometry. The optical and electronic properties of the derivatives were modified by changing the positions of the two methoxy substituents in each of the quadrants, as monitored by UV-vis spectroscopy and cyclic voltammetry measurements. The derivatives were employed as hole-transporting materials (HTMs), and their performances were compared for the fabrication of mesoporous TiO2/CH3NH3PbI3/HTM/Au solar cells. Surprisingly, the cell performance was dependent on the positions of the OMe substituents. The derivative with o-OMe substituents showed highly improved performance by exhibiting a short-circuit current density of 21.2 mA/cm(2), an open-circuit voltage of 1.02 V, and a fill factor of 77.6% under 1 sun illumination (100 mW/cm(2)), which resulted in an overall power conversion efficiency (PCE) of 16.7%, compared to ~15% for conventional p-OMe substituents. The PCE of 16.7% is the highest value reported to date for perovskite-based solar cells with spiro-OMeTAD.

PubMed Disclaimer

LinkOut - more resources