Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Nov;35(12):982-6.
doi: 10.1055/s-0034-1372635. Epub 2014 May 16.

Prior maximal exercise decreases pulmonary diffusing capacity during subsequent exercise

Affiliations

Prior maximal exercise decreases pulmonary diffusing capacity during subsequent exercise

J C Baldi et al. Int J Sports Med. 2014 Nov.

Abstract

Pulmonary diffusion (DLCO) increases during exercise due to greater pulmonary capillary volume (Vc) and membrane diffusing capacity (DM). However, after heavy exercise there is a reduction in resting DLCO. It is unclear whether this post-exercise effect will attenuate the normal increase in DLCO, Vc and DM during subsequent exercise and whether this affects SpO2 (pulse oximeter). DLCO, Vc, DM, cardiac output and SpO2 were measured at rest, moderate (~70% VO2peak) and heavy (~90 VO2peak) exercise in 9 subjects during 2 sessions separated by ~90 min. DLCO, Vc and DM increased during exercise (P<0.05). DLCO (P<0.05) and Vc (P<0.10), but not DM or SpO2 were lower in session 2 compared to the first. Reductions in DLCO and Vc appeared to be smallest during rest (1-4%) and greatest at high-intensity exercise (8-20%), but the interaction was not significant. SpO2 decreased by 4.9% and 5.1% from rest to high-intensity exercise during the first and second exercise bout, but these changes were not different. These data confirm that a bout of high-intensity exercise reduces DLCO and Vc, and may indicate that these changes are exacerbated during subsequent high-intensity exercise. Despite these changes, SpO2 was not affected by previous exercise.

PubMed Disclaimer

Similar articles

Cited by

Publication types