Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 May 19;9(5):e97805.
doi: 10.1371/journal.pone.0097805. eCollection 2014.

Determining prenatal, early childhood and cumulative long-term lead exposure using micro-spatial deciduous dentine levels

Affiliations

Determining prenatal, early childhood and cumulative long-term lead exposure using micro-spatial deciduous dentine levels

Manish Arora et al. PLoS One. .

Abstract

The aim of this study was to assess the validity of micro-spatial dentine lead (Pb) levels as a biomarker for accurately estimating exposure timing over the prenatal and early childhood periods and long-term cumulative exposure to Pb. In a prospective pregnancy cohort sub-sample of 85 subjects, we compared dentine Pb levels measured using laser ablation-inductively coupled plasma mass spectrometry with Pb concentrations in maternal blood collected in the second and third trimesters, maternal bone, umbilical cord blood, and childhood serial blood samples collected from the ages of 3 months to ≥6 years. We found that Pb levels (as 208Pb:43Ca) in dentine formed at birth were significantly associated with cord blood Pb (Spearman ρ = 0.69; n = 27; p<0.0001). The association of prenatal dentine Pb with maternal patella Pb (Spearman ρ = 0.48; n = 59; p<0.0001) was stronger than that observed for tibia Pb levels (Spearman ρ = 0.35; n = 41; p<0.03). When assessing postnatal exposure, we found that Pb levels in dentine formed at 3 months were significantly associated with Pb concentrations in children's blood collected concurrently (Spearman ρ = 0.64; n = 55; p<0.0001). We also found that mean Pb concentrations in secondary dentine (that is formed from root completion to tooth shedding) correlated positively with cumulative blood lead index (Spearman ρ = 0.38; n = 75; p<0.0007). Overall, our results support that micro-spatial measurements of Pb in dentine can be reliably used to reconstruct Pb exposure timing over the prenatal and early childhood periods, and secondary dentine holds the potential to estimate long-term exposure up to the time the tooth is shed.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Overview of the dentine Pb biomarker.
(a) Schematic of a deciduous human incisor. During tooth formation the deposition of the enamel (E) and primary dentine (PD) matrix commences at the enamel-dentine junction (dashed line). At birth the neonatal line (red line) is formed in enamel and dentine providing a landmark to distinguish prenatally formed parts of teeth from those formed postnatally. In our analysis, prenatally formed primary dentine adjacent to the enamel-dentine junction is sampled to obtain prenatal Pb exposure information. Sampling points in dentine at the neonatal line measure fetal Pb exposure at the time of birth. Secondary dentine (SD) formation starts after the completion of the tooth root and proceeds at a slower rate as long at the tooth remains vital. Measurements in this region are used to estimate cumulative long-term Pb exposure from root completion to the time tooth was shed. Pulp chamber (P) and cervical margin (C) between the tooth crown and root are also indicated. (b) Lead distribution and developmental timing of primary dentine sampled in a deciduous molar. It is our hypothesis that Pb levels at each dentine sampling point represent Pb exposure experienced when that part of dentine was being mineralized. In this individual dentine Pb levels showed a marked rise prior to birth. Key time points for change in dentine Pb levels are shown; other points on the graph can be similarly dated.
Figure 2
Figure 2. Association of Pb levels in dentine formed at birth with blood Pb concentrations at birth and childhood.
(a) Significant positive association of Pb levels (as loge [208Pb:43Ca104]) in dentine at the neonatal line (representing fetal Pb exposure at birth) with umbilical cord blood Pb concentrations (as loge [Pb×10 µg/dL]). (b) Spearman’s ρ (Y-axis; vertical lines show 95% CI) of Pb levels in dentine formed at birth with Pb concentrations in blood collected at different ages (X-axis; in months). The association of birth dentine Pb is strongest with umbilical cord blood Pb and is progressively weaker with blood sampled at later ages. Sample size at different time points: birth = 27, 3 m = 55; 6 m = 43; 12 m = 61; 18 m = 63; 24 m = 68; 30 m = 64; 36 m = 63; 48 m = 67; 60 m = 48.
Figure 3
Figure 3. Association of Pb levels in prenatal dentine with maternal bone and blood Pb concentrations.
Prenatal dentine Pb (as loge [AUC 208Pb:43Ca×104]) was positively associated with Pb concentrations (as µg Pb/g bone mineral) in a) tibia (Spearman ρ = 0.35; n = 41; p<0.03) and b) patella (Spearman ρ = 0.48; n = 59; p<0.0001). Relevance of negative bone Pb concentrations is discussed in detail by Hu et al. Significant positive associations were observed between Pb concentrations in maternal blood and prenatal dentine formed during the c) 2nd trimester (Spearman ρ = 0.60; n = 36; p<0.0001) and d) 3rd trimester (Spearman ρ = 0.64; n = 44; p<0.0001).
Figure 4
Figure 4. Timing of postnatal Pb exposure estimated from dentine.
Spearman’s correlation coefficients (and 95% CI) for Pb levels in dentine formed at 3 months postnatally and child blood Pb also measured at 3 months. When compared to Pb levels in blood collected at older ages in childhood, the association was progressively weaker supporting the hypothesis that dentine retains the timing of postnatal Pb exposure.

References

    1. Grandjean P, Landrigan PJ (2006) Developmental neurotoxicity of industrial chemicals. Lancet 368: 2167–2178. - PubMed
    1. Arora M, Austin C (2013) Teeth as a biomarker of past chemical exposure. Curr Opin Pediatr 25: 261–267. - PubMed
    1. Arora M, Bradman A, Austin C, Vedar M, Holland N, et al. (2012) Determining fetal manganese exposure from mantle dentine of deciduous teeth. Environ Sci Technol 46: 5118–5125. - PMC - PubMed
    1. Arora M, Kennedy BJ, Elhlou S, Pearson NJ, Walker DM, et al. (2006) Spatial distribution of lead in human primary teeth as a biomarker of pre- and neonatal lead exposure. Sci Total Environ 371: 55–62. - PubMed
    1. Austin C, Smith TM, Bradman A, Hinde K, Joannes-Boyau R, et al. (2013) Barium distributions in teeth reveal early-life dietary transitions in primates. Nature 498: 216–219. - PMC - PubMed

Publication types

LinkOut - more resources